Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul-Aug;17(4):1317-1328.
doi: 10.1109/TCBB.2019.2892099. Epub 2019 Jan 10.

nAPOLI: A Graph-Based Strategy to Detect and Visualize Conserved Protein-Ligand Interactions in Large-Scale

nAPOLI: A Graph-Based Strategy to Detect and Visualize Conserved Protein-Ligand Interactions in Large-Scale

Alexandre V Fassio et al. IEEE/ACM Trans Comput Biol Bioinform. 2020 Jul-Aug.

Abstract

Essential roles in biological systems depend on protein-ligand recognition, which is mostly driven by specific non-covalent interactions. Consequently, investigating these interactions contributes to understanding how molecular recognition occurs. Nowadays, a large-scale data set of protein-ligand complexes is available in the Protein Data Bank, what led several tools to be proposed as an effort to elucidate protein-ligand interactions. Nonetheless, there is not an all-in-one tool that couples large-scale statistical, visual, and interactive analysis of conserved protein-ligand interactions. Therefore, we propose nAPOLI (Analysis of PrOtein-Ligand Interactions), a web server that combines large-scale analysis of conserved interactions in protein-ligand complexes at the atomic-level, interactive visual representations, and comprehensive reports of the interacting residues/atoms to detect and explore conserved non-covalent interactions. We demonstrate the potential of nAPOLI in detecting important conserved interacting residues through four case studies: two involving a human cyclin-dependent kinase 2 (CDK2), one related to ricin, and other to the human nuclear receptor subfamily 3 (hNR3). nAPOLI proved to be suitable to identify conserved interactions according to literature, as well as highlight additional interactions. Finally, we illustrate, with a virtual screening ligand selection, how nAPOLI can be widely applied in structural biology and drug design. nAPOLI is freely available at bioinfo.dcc.ufmg.br/napoli/.

PubMed Disclaimer

Similar articles

Cited by

Publication types