Differential sexual network connectivity offers a parsimonious explanation for population-level variations in the prevalence of bacterial vaginosis: a data-driven, model-supported hypothesis
- PMID: 30630481
- PMCID: PMC6327541
- DOI: 10.1186/s12905-018-0703-0
Differential sexual network connectivity offers a parsimonious explanation for population-level variations in the prevalence of bacterial vaginosis: a data-driven, model-supported hypothesis
Abstract
Background: The prevalence of bacterial vaginosis (BV) and vaginal microbiota types varies dramatically between different populations around the world. Understanding what underpins these differences is important, as high-diversity microbiotas associated with BV are implicated in adverse pregnancy outcomes and enhanced susceptibility to and transmission of sexually transmitted infections.
Main text: We hypothesize that these variations in the vaginal microbiota can, in part, be explained by variations in the connectivity of sexual networks. We argue: 1) Couple-level data suggest that BV-associated bacteria can be sexually transmitted and hence high sexual network connectivity would be expected to promote the spread of BV-associated bacteria. Epidemiological studies have found positive associations between indicators of network connectivity and the prevalence of BV; 2) The relationship between BV prevalence and STI incidence/prevalence can be parsimoniously explained by differential network connectivity; 3) Studies from other mammals are generally supportive of the association between network connectivity and high-diversity vaginal microbiota.
Conclusion: To test this hypothesis, we propose a combination of empirical and simulation-based study designs.
Keywords: Bacterial vaginosis; Concurrency; HIV; Microbiome; STI; Sexual network connectivity.
Conflict of interest statement
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures
References
-
- Lennard K, Dabee S, Barnabas SL, Havyarimana E, Blakney A, Jaumdally SZ, et al. Microbial composition predicts genital tract inflammation and persistent bacterial vaginosis in adolescent South African women. Infect Immun. 2017. 10.1128/IAI.00410-17 Epub 2017/10/19. PubMed PMID: 29038128. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
