Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017;4(1):11.
doi: 10.1186/s40594-017-0065-4. Epub 2017 Jun 12.

The effects of an afterschool STEM program on students' motivation and engagement

Affiliations

The effects of an afterschool STEM program on students' motivation and engagement

Jessica R Chittum et al. Int J STEM Educ. 2017.

Abstract

Background: One significant factor in facilitating students' career intentions and persistence in STEM (science, technology, engineering, and mathematics) fields is targeting their interests and motivation before eighth grade. To reach students at this critical stage, a design-based afterschool STEM program, titled Studio STEM, was implemented to foster motivation and engagement in STEM topics and activities. The purpose of this study is twofold: (a) to investigate how Studio STEM affected students' beliefs about science and whether these beliefs differed from their peers who did not participate in the program, and (b) to examine a case study of one Studio STEM implementation to investigate elements of the curriculum that motivated students to engage in the program.

Results: After completing two Studio STEM programs, participants' ratings of their values for science and science competence were higher than those of non-participants. In addition, the Studio STEM participants' motivational beliefs about science and intentions to pursue a college degree were more resilient over time than their peers. We also found that students could be motivated in a voluntary afterschool program (Studio STEM) in which they grappled with STEM concepts and activities, and could verbalize specific program elements that motivated them.

Conclusions: Through this study, we found that students could be motivated in Studio STEM and that the experience had a positive impact on their perceptions about science as a field. Importantly, Studio STEM appeared to halt the decline in these students' motivational beliefs about science that typically occurs during the middle school years, indicating that afterschool programs can be one way to help students maintain their motivation in science. Studying the program features that the students found motivating may help educators to make connections between research and theory, and their classroom instruction to motivate their students.

Keywords: Afterschool program, Mixed methods research; Motivation; STEM education.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Means comparison between Studio STEM participants and the non-participants before and after program participation. Studio STEM participants n = 19; non-participants n = 102

References

    1. Ainley, M., & Ainley, J. (2011). Student engagement with science in early adolescence: The contribution of enjoyment to students’ continuing interest in learning about science. Contemporary Educational Psychology, 36, 4–12. doi:10.1016/j.cedpsych.2010.08.001
    1. American Association for the Advancement of Science . Benchmarks for science literacy. New York, NY: Oxford University Press; 1993.
    1. Bandura A. Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall; 1986.
    1. Bergin, D. A. (1999). Influences on classroom interest. Educational Psychologist, 34(2), 87–98. doi:10.1207/s15326985ep3402_2
    1. Bergin, C., & Bergin, D. (2009). Attachment in the classroom. Educational Psychology Review, 21, 141–170. doi:10.1007/s10648-009-9104-0

LinkOut - more resources