Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 11;10(1):167.
doi: 10.1038/s41467-018-08019-7.

Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas

Affiliations

Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas

Jingxiu Xie et al. Nat Commun. .

Abstract

Due to the surge of natural gas production, feedstocks for chemicals shift towards lighter hydrocarbons, particularly methane. The success of a Gas-to-Chemicals process via synthesis gas (CO and H2) depends on the ability of catalysts to suppress methane and carbon dioxide formation. We designed a Co/Mn/Na/S catalyst, which gives rise to negligible Water-Gas-Shift activity and a hydrocarbon product spectrum deviating from the Anderson-Schulz-Flory distribution. At 240 °C and 1 bar, it shows a C2-C4 olefins selectivity of 54%. At 10 bar, it displays 30% and 59% selectivities towards lower olefins and fuels, respectively. The spent catalyst consists of 10 nm Co nanoparticles with hcp Co metal phase. We propose a synergistic effect of Na plus S, which act as electronic promoters on the Co surface, thus improving selectivities towards lower olefins and fuels while largely reducing methane and carbon dioxide formation.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Catalytic performance of Co1Mn3–Na2S at different reaction temperatures or pressures. a Activity and selectivity at 240–280 °C, 10 bar, and H2/CO = 2, and b activity and selectivity at 240 °C, 3–10 bar, and H2/CO = 2. Activity is shown here as % CO conversion and product selectivity is shown in terms of methane, CH4 (blue solid diamonds), C2–C4 olefins (red solid squares), C2–C4 paraffins (light red open squares), and C5+ (grey solid triangles) which include all other products except CO2 and C1–C4 hydrocarbons
Fig. 2
Fig. 2
Catalytic performance over 70 h time-on-stream. Reaction conditions: 240 °C, 3 bar, and H2/CO = 2. a Activity in terms of %CO conversion (black solid circles) and selectivity towards methane, CH4 (blue solids diamonds), C2–C4 olefins (red solid squares), and C5+ (grey solid triangles) of Co1Mn3–Na2S over time, and b activity in terms of cobalt-time-yield, CTY, of various Co-based catalysts, namely Co1Mn3 (black open circles), Co1Mn3–Na2O (grey solid circles), Co1Mn3–Na2S2O3 (grey solid with black outline circles), Co1Mn3–Na2S (black solids circles), Co3Mn1 (blue open diamonds), Co3Mn1–Na2S (blue solid diamonds), Co3Mn1–Na2O (light blue solid diamonds), and bulk Co (red squares) over time
Fig. 3
Fig. 3
Distribution of 1-olefins and n-paraffins of C1–C8 hydrocarbon products. Reaction conditions: 240 °C, 10 bar, H2/CO = 2, 18–30% CO conversion. a Co1Mn3–Na2S, b Co1Mn3–Na2O, c Co1Mn3 and d Co. Red bar corresponds to olefin product flow and light red bar corresponds to paraffin product flow
Fig. 4
Fig. 4
XRD analysis of spent Co1Mn3, Co1Mn3–Na2S, Co3Mn1–Na2O. Reaction conditions: 240–280 °C, 10 bar, and H2/CO = 2. a Background corrected XRD patterns and b rietveld QPA-based crystalline phase compositions, which shows the MnxCoyO4 phase (blue), Mn0.95O (cyan), MnCO3 (green), hcp Co (violet) and Co2C (brown)
Fig. 5
Fig. 5
Electron microscopy images of spent Co1Mn3–Na2S. Reaction conditions: 240–280 °C, 10 bar, and H2/CO = 2. a bright-field TEM image with a scale bar corresponding to 100 nm, and blue arrows to point out the presence of wax, b dark-field TEM images with a scale bar corresponding to 50 nm, c particle size distribution of Co nanoparticles supported on MnO, and df STEM-EDX maps of Co and Mn, and the scale bars correspond to 200 nm
Fig. 6
Fig. 6
DFT-calculated binding geometries of Na2S and Na2O on the Co (0001) surface. a Na2O and b Na2S bind in a very similar fashion, although the O atom ends up above a subsurface cobalt atom and the S atom above an empty site. Atoms outside the calculation unit cell are depicted as smaller spheres; blue is Co, orange is Na, yellow is S and red is O
Fig. 7
Fig. 7
Schematic drawing of the structure of the active catalysts based on TEM and XRD analysis. a Co1Mn3–Na2S consists of metallic Co nanoparticles of ~10 nm dispersed on MnO support and b Co3Mn1–Na2O consists of Co2C nanoprisms of ~10–50 nm from Zhong et al. Whereas the former catalyst restricts WGS and thus CO2 formation, the latter leads to large amounts of CO2

References

    1. Mitchell SF, Shantz DF. Future feedstocks for the chemical industry - where will the carbon come from? AIChE. 2015;61:2374–2384. doi: 10.1002/aic.14910. - DOI
    1. Dieterle M, Schwab E. Raw material change in the chemical industry. Top. Catal. 2016;59:817–822. doi: 10.1007/s11244-016-0554-6. - DOI
    1. Sousa-Aguiar EF, Noronha FB, Faro A., Jr. The main catalytic challenges in GTL (gas-to-liquids) processes. Catal. Sci. Technol. 2011;1:698. doi: 10.1039/c1cy00116g. - DOI
    1. Zhang Q, Kang J, Wang Y. Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem. 2010;2:1030–1058. doi: 10.1002/cctc.201000071. - DOI
    1. Torres Galvis HM, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science. 2012;335:835–838. doi: 10.1126/science.1215614. - DOI - PubMed

Publication types