Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019:1912:301-321.
doi: 10.1007/978-1-4939-8982-9_12.

Network-Based Methods and Other Approaches for Predicting lncRNA Functions and Disease Associations

Affiliations

Network-Based Methods and Other Approaches for Predicting lncRNA Functions and Disease Associations

Rosario Michael Piro et al. Methods Mol Biol. 2019.

Abstract

The discovery that a considerable portion of eukaryotic genomes is transcribed and gives rise to long noncoding RNAs (lncRNAs) provides an important new perspective on the transcriptome and raises questions about the centrality of these lncRNAs in gene-regulatory processes and diseases. The rapidly increasing number of mechanistically investigated lncRNAs has provided evidence for distinct functional classes, such as enhancer-like lncRNAs, which modulate gene expression via chromatin looping, and noncoding competing endogenous RNAs (ceRNAs), which act as microRNA decoys. Despite great progress in the last years, the majority of lncRNAs are functionally uncharacterized and their implication for disease biogenesis and progression is unknown. Here, we summarize recent developments in lncRNA function prediction in general and lncRNA-disease associations in particular, with emphasis on in silico methods based on network analysis and on ceRNA function prediction. We believe that such computational techniques provide a valuable aid to prioritize functional lncRNAs or disease-relevant lncRNAs for targeted, experimental follow-up studies.

Keywords: Chromatin interactions; Disease-gene prediction; Function prediction; Network analysis; ceRNA; lncRNA.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources