Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr:221:235-245.
doi: 10.1016/j.chemosphere.2019.01.033. Epub 2019 Jan 7.

Toxic effects of bisphenol A on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction

Affiliations

Toxic effects of bisphenol A on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction

Qing Wang et al. Chemosphere. 2019 Apr.

Abstract

Bisphenol A (BPA) is an abundant endocrine-disrupting compound that is found in the aquatic environment and has adverse effects on fish reproduction; however, the exact pathway of these impacts is unclear. In this study, the different effects of BPA on ovarian and testis development in goldfish (Carassius auratus) and the different mechanisms underlying these effects were investigated. The gonadosomatic index (GSI) and gonadal histology demonstrated that BPA diminished ovarian maturation in goldfish, which recovered after BPA treatment withdrawal. In males, BPA disrupted testis maturation, but this disruption could not be recovered after BPA treatment withdrawal. The hypothalamic-pituitary-gonad (HPG) axis-related genes sgnrh, fshβ and lhβ were significantly decreased in BPA-treated female fish, while no changes in sex steroid hormone levels and no TUNEL and PCNA staining were found in the ovary, suggesting that BPA may reduce ovarian maturation through the HPG axis. In male fish, TUNEL staining was found in 1 μg L-1 BPA-exposed germ cells and 50 and 500 μg L-1 BPA-exposed Leydig cells. Decreases in 11-KT levels were also found in 50 and 500 μg L-1 BPA-exposed fish, but BPA did not affect genes associated with the HPG axes. This result shows that BPA disrupts testis maturation through apoptosis of germ cells and Leydig cells, thus inducing decreases in 11-KT levels that disrupt spermatogenesis. Collectively, our findings provide insights into the molecular and cellular mechanisms underlying BPA disturbance of goldfish reproduction.

Keywords: BPA; HPG axis; Ovarian maturation; PCNA; Spermatogenesis; TUNEL.

PubMed Disclaimer

LinkOut - more resources