Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;48(1):47-56.
doi: 10.2134/jeq2018.06.0233.

Transport of Potential Manure Hormone and Pharmaceutical Contaminants through Intact Soil Columns

Transport of Potential Manure Hormone and Pharmaceutical Contaminants through Intact Soil Columns

Danika N Hill et al. J Environ Qual. 2019 Jan.

Abstract

Although adding manure to agricultural soils is a commonly practiced disposal method and a means to enhance soil productivity, potential environmental contamination by any associated chemicals of emerging concern (CECs) such as hormones and pharmaceuticals is not well understood. Our objective was to provide field-relevant predictions of soil transport and attenuation of 19 potential manure CECs using undisturbed soil columns irrigated under unsaturated conditions. The CEC concentrations in leached water were monitored for 13 wk using high performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS), after which time soil in the cores was removed and sampled for extractable CECs. Compounds quantified in column leachate included all four of the added sulfonamide antibiotics and the nonsteroidal, anti-inflammatory drug flunixin. Only trace amounts of several of the seven hormones, five remaining antibiotics, and two antimicrobials leached from the columns from exogenous soil additions. Soil residues of all 19 compounds were detected, with highest extractable amounts for 17α-hydroxyprogesterone > triclosan (antimicrobial) > flunixin > oxytetracycline. Those CECs with the highest recoveries as calculated by summing leached and extractable amounts were flunixin (14.5%), 17α-hydroxyprogesterone (5.3%), triclosan (4.6%), and sulfadimethoxine (4.8%). Manure management to prevent CEC contamination should consider the potential environmental problems caused by negatively charged compounds with the greatest mobility (flunixin and sulfadimethoxine) and those that have long residence times in soil (triclosan, 17α-hydroxyprogesterone, flunixin, and oxytetracycline). Flunixin is particularly important given its mobility and long residence time in soil.

PubMed Disclaimer