PeptoGrid-Rescoring Function for AutoDock Vina to Identify New Bioactive Molecules from Short Peptide Libraries
- PMID: 30642123
- PMCID: PMC6359344
- DOI: 10.3390/molecules24020277
PeptoGrid-Rescoring Function for AutoDock Vina to Identify New Bioactive Molecules from Short Peptide Libraries
Abstract
Peptides are promising drug candidates due to high specificity and standout safety. Identification of bioactive peptides de novo using molecular docking is a widely used approach. However, current scoring functions are poorly optimized for peptide ligands. In this work, we present a novel algorithm PeptoGrid that rescores poses predicted by AutoDock Vina according to frequency information of ligand atoms with particular properties appearing at different positions in the target protein's ligand binding site. We explored the relevance of PeptoGrid ranking with a virtual screening of peptide libraries using angiotensin-converting enzyme and GABAB receptor as targets. A reasonable agreement between the computational and experimental data suggests that PeptoGrid is suitable for discovering functional leads.
Keywords: Danio rerio; docking; gabab receptor; peptides; rescoring.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Kruger D.M., Glas A., Bier D., Pospiech N., Wallraven K., Dietrich L., Ottmann C., Koch O., Hennig S., Grossmann T.N. Structure-Based Design of Non-natural Macrocyclic Peptides That Inhibit Protein-Protein Interactions. J. Med. Chem. 2017;60:8982–8988. doi: 10.1021/acs.jmedchem.7b01221. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
