Stress-Tolerant Yeasts: Opportunistic Pathogenicity Versus Biocontrol Potential
- PMID: 30646593
- PMCID: PMC6357073
- DOI: 10.3390/genes10010042
Stress-Tolerant Yeasts: Opportunistic Pathogenicity Versus Biocontrol Potential
Abstract
Stress-tolerant fungi that can thrive under various environmental extremes are highly desirable for their application to biological control, as an alternative to chemicals for pest management. However, in fungi, the mechanisms of stress tolerance might also have roles in mammal opportunism. We tested five species with high biocontrol potential in agriculture (Aureobasidiumpullulans, Debayomyceshansenii, Meyerozymaguilliermondii, Metschnikowiafructicola, Rhodotorulamucilaginosa) and two species recognized as emerging opportunistic human pathogens (Exophialadermatitidis, Aureobasidiummelanogenum) for growth under oligotrophic conditions and at 37 °C, and for tolerance to oxidative stress, formation of biofilms, production of hydrolytic enzymes and siderophores, and use of hydrocarbons as sole carbon source. The results show large overlap between traits desirable for biocontrol and traits linked to opportunism (growth under oligotrophic conditions, production of siderophores, high oxidative stress tolerance, and specific enzyme activities). Based on existing knowledge and these data, we suggest that oligotrophism and thermotolerance together with siderophore production at 37 °C, urease activity, melanization, and biofilm production are the main traits that increase the potential for fungi to cause opportunistic infections in mammals. These traits should be carefully considered when assessing safety of potential biocontrol agents.
Keywords: CAZy; biocontrol agent; biofilm; melanin; oligotrophism; opportunistic pathogen; protease; secretome; siderophore; stress tolerance; thermotolerance; virulence.
Conflict of interest statement
The authors declare that they have no conflicts of interest.
Figures






Similar articles
-
Comparative pathogenicity of opportunistic black yeasts in Aureobasidium.Mycoses. 2019 Sep;62(9):803-811. doi: 10.1111/myc.12931. Epub 2019 Jul 19. Mycoses. 2019. PMID: 31107996
-
Polyextremotolerant, opportunistic, and melanin-driven resilient black yeast Exophiala dermatitidis in environmental and clinical contexts.Sci Rep. 2025 Feb 22;15(1):6472. doi: 10.1038/s41598-025-88595-z. Sci Rep. 2025. PMID: 39987208 Free PMC article.
-
Biocontrol yeasts: mechanisms and applications.World J Microbiol Biotechnol. 2019 Oct 1;35(10):154. doi: 10.1007/s11274-019-2728-4. World J Microbiol Biotechnol. 2019. PMID: 31576429 Free PMC article. Review.
-
Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.Phytopathology. 2018 Jun;108(6):691-701. doi: 10.1094/PHYTO-09-17-0306-R. Epub 2018 Apr 26. Phytopathology. 2018. PMID: 29334476
-
Evolution of black yeasts: possible adaptation to the human host.Antonie Van Leeuwenhoek. 1993 Feb;63(2):105-9. doi: 10.1007/BF00872386. Antonie Van Leeuwenhoek. 1993. PMID: 8259828 Review.
Cited by
-
Epiphytic Yeasts from South Romania for Preventing Food Microbial Contamination.Life (Basel). 2024 Aug 29;14(9):1087. doi: 10.3390/life14091087. Life (Basel). 2024. PMID: 39337871 Free PMC article.
-
The impact of Aureobasidium melanogenum cells and extracellular vesicles on human cell lines.Sci Rep. 2025 Jan 9;15(1):1413. doi: 10.1038/s41598-024-84189-3. Sci Rep. 2025. PMID: 39789015 Free PMC article.
-
Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape.World J Microbiol Biotechnol. 2020 Oct 17;36(11):171. doi: 10.1007/s11274-020-02947-7. World J Microbiol Biotechnol. 2020. PMID: 33067644 Free PMC article.
-
Fungal and bacterial diversity of Svalbard subglacial ice.Sci Rep. 2019 Dec 27;9(1):20230. doi: 10.1038/s41598-019-56290-5. Sci Rep. 2019. PMID: 31882659 Free PMC article.
-
Occurrence and Identification of Yeasts in Production of White-Brined Cheese.Microorganisms. 2022 May 24;10(6):1079. doi: 10.3390/microorganisms10061079. Microorganisms. 2022. PMID: 35744597 Free PMC article.
References
-
- Sharma R.R., Singh D., Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control. 2009;50:205–221. doi: 10.1016/j.biocontrol.2009.05.001. - DOI
-
- de Hoog G.S., Guarro J., Gené J., Figueras M.J. The Ultimate Benchtool for Diagnostics. Blackwell Publishing Ltd.; Hoboken, NJ, USA: 2015. Atlas of clinical fungi.
-
- Gostinčar C., Zajc J., Lenassi M., Plemenitaš A., de Hoog S., Al-Hatmi A.M.S., Gunde-Cimerman N. Fungi between extremotolerance and opportunistic pathogenicity on humans. Fungal Divers. 2018;93:195–213. doi: 10.1007/s13225-018-0414-8. - DOI
-
- Gostinčar C., Ohm R.A., Kogej T., Sonjak S., Turk M., Zajc J., Zalar P., Grube M., Sun H., Han J., et al. Genome sequencing of four Aureobasidium pullulans varieties: Biotechnological potential, stress tolerance, and description of new species. BMC Genom. 2014;15:549. doi: 10.1186/1471-2164-15-549. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources