Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 3;9(48):8951-8956.
doi: 10.1039/c8sc03606c. eCollection 2018 Dec 28.

Ir(iii)-catalyzed ortho C-H alkylations of (hetero)aromatic aldehydes using alkyl boron reagents

Affiliations

Ir(iii)-catalyzed ortho C-H alkylations of (hetero)aromatic aldehydes using alkyl boron reagents

Xiao-Yang Chen et al. Chem Sci. .

Abstract

Transition-metal-catalyzed C-H alkylation reactions directed by aldehydes or ketones have been largely restricted to electronically activated alkenes. Herein, we report a general protocol for the Ir(iii)-catalyzed ortho C-H alkylations of (hetero)aromatic aldehydes using alkyl boron reagents as the coupling partner. Featuring aniline as an inexpensive catalytic ligand, the method was compatible with a wide variety of benzaldehydes, heterocyclic aldehydes, potassium alkyltrifluoroborates as well as a few α,β-unsaturated aldehydes. An X-ray crystal structure of a benzaldehyde ortho C-H iridation intermediate was also successfully obtained.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Ir(iii)-catalyzed, site-selective alkylations of (hetero)aromatic and α,β-unsaturated aldehydes using aniline as the catalytic ligand.
Scheme 2
Scheme 2. Scope of substituted benzaldehydes. aThe reactions were performed on a 0.3 mmol scale, and yields are reported as isolated yields. bn-BuBF3K (2 equiv.) and AgF (3 equiv.) were used.
Scheme 3
Scheme 3. Scope of heterocyclic aldehydes. aThe reactions were performed on a 0.3 mmol scale, and yields are reported as isolated yields. bn-BuBF3K (2 equiv.) and AgF (3 equiv.) were used.
Scheme 4
Scheme 4. Scope of potassium alkyltrifluoroborates. aThe reactions were performed on a 0.3 mmol scale, and yields are reported as isolated yields. bDCE (0.1 M) was used as the reaction solvent and the reaction temperature was 80 °C.
Scheme 5
Scheme 5. Isolation and X-ray characterization of iridacycle II and its subsequent transformations. aAll yields are reported as isolated yields.
Scheme 6
Scheme 6. Preliminary studies on the β C–H alkylations of α,β-unsaturated aldehydes. aThe reactions were performed on a 0.3 mmol scale, and yields are reported as isolated yields. bCrotonic acid (30 mol%) was an additive.

Similar articles

Cited by

References

    1. Chen X., Engle K. M., Wang D.-H., Yu J.-Q. Angew. Chem., Int. Ed. 2009;48:5094–5115. - PMC - PubMed
    2. Ackermann L. Chem. Commun. 2010;46:4866–4877. - PubMed
    3. Colby D. A., Bergman R. G., Ellman J. A. Chem. Rev. 2010;110:624–655. - PMC - PubMed
    4. Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147–1169. - PMC - PubMed
    5. Engle K. M., Mei T.-S., Wasa M., Yu J.-Q. Acc. Chem. Res. 2012;45:788–802. - PMC - PubMed
    6. He J., Wasa M., Chan K. S. L., Shao Q., Yu J.-Q. Chem. Rev. 2017;117:8754–8786. - PMC - PubMed
    1. Gürbüz N., Özdemir I., Çetinkaya B. Tetrahedron Lett. 2005;46:2273–2277.
    2. Padala K., Jeganmohan M. Org. Lett. 2012;14:1134–1137. - PubMed
    3. Lanke V., Ramaiah Prabhu K. Org. Lett. 2013;15:6262–6265. - PubMed
    4. Yang F. Z., Rauch K., Kettelhoit K., Ackermann L. Angew. Chem., Int. Ed. 2014;53:11285–11288. - PubMed
    5. Santhoshkumar R., Mannathan S., Cheng C.-H. J. Am. Chem. Soc. 2015;137:16116–16120. - PubMed
    1. Tremont S. J., Rahman H. U. J. Am. Chem. Soc. 1984;106:5759–5760.
    2. Chen X., Goodhue C. E., Yu J.-Q. J. Am. Chem. Soc. 2006;128:12634–12635. - PubMed
    3. Chen X., Li J.-J., Hao X.-S., Goodhue C. E., Yu J.-Q. J. Am. Chem. Soc. 2006;128:78–79. - PubMed
    4. Ackermann L., Novák P., Vicente R., Hofmann N. Angew. Chem., Int. Ed. 2009;48:6045–6048. - PubMed
    5. Zhang Y.-H., Shi B.-F., Yu J.-Q. Angew. Chem., Int. Ed. 2009;48:6097–6100. - PMC - PubMed
    6. Shabashov D., Daugulis O. J. Am. Chem. Soc. 2010;132:3965–3972. - PMC - PubMed
    7. Chen Q., Ilies L., Nakamura E. J. Am. Chem. Soc. 2011;133:428–429. - PubMed
    8. Zhao Y., Chen G. Org. Lett. 2011;13:4850–4853. - PubMed
    9. Aihara Y., Chatani N. J. Am. Chem. Soc. 2013;135:5308–5311. - PubMed
    10. Chen K., Hu F., Zhang S.-Q., Shi B.-F. Chem. Sci. 2013;4:3906–3911.
    11. Neufeldt S. R., Seigerman C. K., Sanford M. S. Org. Lett. 2013;15:2302–2305. - PMC - PubMed
    12. Thuy-Boun P. S., Villa G., Dang D., Richardson P., Su S., Yu J.-Q. J. Am. Chem. Soc. 2013;135:17508–17513. - PMC - PubMed
    13. Zhang S.-Y., He G., Nack W. A., Zhao Y., Li Q., Chen G. J. Am. Chem. Soc. 2013;135:2124–2127. - PubMed
    14. Zhang S.-Y., Li Q., He G., Nack W. A., Chen G. J. Am. Chem. Soc. 2013;135:12135–12141. - PubMed
    15. Chen K., Shi B.-F. Angew. Chem., Int. Ed. 2014;53:11950–11954. - PubMed
    16. Ilies L., Matsubara T., Ichikawa S., Asako S., Nakamura E. J. Am. Chem. Soc. 2014;136:13126–13129. - PubMed
    17. Zhu R.-Y., He J., Wang X.-C., Yu J.-Q. J. Am. Chem. Soc. 2014;136:13194–13197. - PMC - PubMed
    18. Wang H., Yu S., Qi Z., Li X. Org. Lett. 2015;17:2812–2815. - PubMed
    19. Wippich J., Schnapperelle I., Bach T. Chem. Commun. 2015;51:3166–3168. - PubMed
    20. Zhang S.-Y., Li Q., He G., Nack W. A., Chen G. J. Am. Chem. Soc. 2015;137:531–539. - PubMed
    21. Chen K., Li X., Zhang S.-Q., Shi B.-F. Chem. Commun. 2016;52:1915–1918. - PubMed
    22. Cera G., Haven T., Ackermann L. Angew. Chem., Int. Ed. 2016;55:1484–1488. - PubMed
    23. Peng P., Wang J., Jiang H., Liu H. Org. Lett. 2016;18:5376–5379. - PubMed
    24. Wiest J. M., Pothig A., Bach T. Org. Lett. 2016;18:852–855. - PubMed
    25. Chen Z., Hu L. a., Zeng F., Zhu R., Zheng S., Yu Q., Huang J. Chem. Commun. 2017;53:4258–4261. - PubMed
    26. Shao Q., He J., Wu Q.-F., Yu J.-Q. ACS Catal. 2017;7:7777–7782.
    1. Murai S., Kakiuchi F., Sekine S., Tanaka Y., Kamatani A., Sonoda M., Chatani N. Nature. 1993;366:529–531.
    2. Kakiuchi F., Yamauchi M., Chatani N., Murai S. Chem. Lett. 1996;25:111–112.
    3. Lenges C. P., Brookhart M. J. Am. Chem. Soc. 1999;121:6616–6623.
    4. Jun C.-H., Hong J.-B., Kim Y.-H., Chung K.-Y. Angew. Chem., Int. Ed. 2000;39:3440–3442. - PubMed
    5. Lim Y.-G., Han J.-S., Yang S.-S., Chun J. H. Tetrahedron Lett. 2001;42:4853–4856.
    6. Thalji R. K., Ahrendt K. A., Bergman R. G., Ellman J. A. J. Am. Chem. Soc. 2001;123:9692–9693. - PubMed
    7. Jun C.-H., Moon C. W., Hong J.-B., Lim S.-G., Chung K.-Y., Kim Y.-H. Chem.–Eur. J. 2002;8:485–492. - PubMed
    8. Thalji R. K., Ellman J. A., Bergman R. G. J. Am. Chem. Soc. 2004;126:7192–7193. - PubMed
    9. Martinez R., Chevalier R., Darses S., Genet J.-P. Angew. Chem., Int. Ed. 2006;45:8232–8235. - PubMed
    10. Watzke A., Wilson R. M., O'Malley S. J., Bergman R. G., Ellman J. A. Synlett. 2007;2007:2383–2389.
    11. Tsuchikama K., Kasagawa M., Hashimoto Y.-K., Endo K., Shibata T. J. Organomet. Chem. 2008;693:3939–3942.
    12. Kakiuchi F., Kochi T., Mizushima E., Murai S. J. Am. Chem. Soc. 2010;132:17741–17750. - PubMed
    13. Crisenza G. E. M., McCreanor N. G., Bower J. F. J. Am. Chem. Soc. 2014;136:10258–10261. - PubMed
    14. Kimura N., Kochi T., Kakiuchi F. J. Am. Chem. Soc. 2017;139:14849–14852. - PubMed
    1. Kakiuchi F., Tanaka Y., Sato T., Chatani N., Murai S. Chem. Lett. 1995;24:679–680.
    2. Trost B. M., Imi K., Davies I. W. J. Am. Chem. Soc. 1995;117:5371–5372.
    3. Sato T., Kakiuchi F., Chatani N., Murai S. Chem. Lett. 1998;27:893–894.
    4. Kakiuchi F., Sato T., Igi K., Chatani N., Murai S. Chem. Lett. 2001;30:386–387.
    5. Jun C.-H., Moon C. W., Kim Y.-M., Lee H., Lee J. H. Tetrahedron Lett. 2002;43:4233–4236.
    6. Colby D. A., Bergman R. G., Ellman J. A. J. Am. Chem. Soc. 2006;128:5604–5605. - PMC - PubMed