Functional reconstitution of the olfactory membrane: incorporation of the olfactory adenylate cyclase in liposomes
- PMID: 3064810
- DOI: 10.1021/bi00417a040
Functional reconstitution of the olfactory membrane: incorporation of the olfactory adenylate cyclase in liposomes
Abstract
Chemosensory cilia isolated from the olfactory epithelium of Rana catesbeiana were solubilized with Lubrol PX in the presence of supplementary lipid, forskolin, and sodium fluoride. Subsequent removal of the detergent by adsorption onto Biobeads SM2 results in the formation of proteoliposomes that display forskolin- and GTP gamma S-sensitive adenylate cyclase activity. Sucrose gradient centrifugation of liposomes formed in the presence of fluorescently labeled phosphatidylcholine demonstrates association between the olfactory adenylate cyclase and the exogenously added lipid. Forskolin stimulates the enzyme in reconstituted membranes with the same potency as in native membranes (EC50 = 1-2 microM). However, GTP gamma S is 350-fold more potent in native membranes (EC50 = 4.0 +/- 0.5 nM) than in reconstituted membranes (EC50 = 1.4 +/- 0.3 microM). These studies represent a first step toward the functional reconstitution and molecular dissection of the olfactory membrane.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources