Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 1;95(2).
doi: 10.1093/femsec/fiz006.

Microbial community composition of sediments influenced by intensive mariculture activity

Affiliations

Microbial community composition of sediments influenced by intensive mariculture activity

Chyrene Moncada et al. FEMS Microbiol Ecol. .

Abstract

Marine aquaculture is a major industry that supports the economy in many countries, including the Philippines. However, excess feeds and fish waste generated by mariculture activities contribute an immense nutrient load to the environment that can affect the underlying sediment. To better understand these impacts, we compared the physicochemical characteristics and microbial community composition of sediments taken at a fish cage and an off cage site in Bolinao, Philippines. Sediments and pore water at the fish cage site showed evidence of greater organic enrichment relative to the off cage site. Under these conditions, we found lower relative abundance of dissimilatory sulfate reductase and nitrite reductase genes, suggesting shifts in prevalent nutrient cycling processes. This is further supported by 16S rRNA gene sequencing that revealed differences in the community composition between sites. Fish cage sediments favored the growth of taxa that thrive in anaerobic, organic carbon-enriched environments, such as members of class Anaerolineae, which can potentially serve as bioindicators of eutrophication in sediments. This study demonstrates that intensive mariculture activity can cause eutrophic sediment conditions that influence microbial community structure and function.

PubMed Disclaimer

Publication types

LinkOut - more resources