Damage-tolerant architected materials inspired by crystal microstructure
- PMID: 30651615
- DOI: 10.1038/s41586-018-0850-3
Damage-tolerant architected materials inspired by crystal microstructure
Erratum in
-
Publisher Correction: Damage-tolerant architected materials inspired by crystal microstructure.Nature. 2019 Mar;567(7748):E14. doi: 10.1038/s41586-019-0968-y. Nature. 2019. PMID: 30820031
Abstract
Architected materials that consist of periodic arrangements of nodes and struts are lightweight and can exhibit combinations of properties (such as negative Poisson ratios) that do not occur in conventional solids. Architected materials reported previously are usually constructed from identical 'unit cells' arranged so that they all have the same orientation. As a result, when loaded beyond the yield point, localized bands of high stress emerge, causing catastrophic collapse of the mechanical strength of the material. This 'post-yielding collapse' is analogous to the rapid decreases in stress associated with dislocation slip in metallic single crystals. Here we use the hardening mechanisms found in crystalline materials to develop architected materials that are robust and damage-tolerant, by mimicking the microscale structure of crystalline materials-such as grain boundaries, precipitates and phases. The crystal-inspired mesoscale structures in our architected materials are as important for their mechanical properties as are crystallographic microstructures in metallic alloys. Our approach combines the hardening principles of metallurgy and architected materials, enabling the design of materials with desired properties.
Comment in
-
Atomic-scale hardening mechanisms apply on larger scales in 'architected' materials.Nature. 2019 Jan;565(7739):303-304. doi: 10.1038/d41586-019-00042-y. Nature. 2019. PMID: 30651619 No abstract available.
-
3D printing mimics metals.Nature. 2019 Jan;565(7739):265. doi: 10.1038/d41586-019-00139-4. Nature. 2019. PMID: 30820044 No abstract available.
Similar articles
-
3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material.ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39915-39924. doi: 10.1021/acsami.1c11226. Epub 2021 Aug 16. ACS Appl Mater Interfaces. 2021. PMID: 34396781
-
3D-Printed Architected Materials Inspired by Cubic Bravais Lattices.ACS Biomater Sci Eng. 2023 Jul 10;9(7):3935-3944. doi: 10.1021/acsbiomaterials.0c01708. Epub 2021 Jul 26. ACS Biomater Sci Eng. 2023. PMID: 34309355 Free PMC article.
-
Crack-Deflecting Lattice Metamaterials Inspired by Precipitation Hardening.Small. 2024 Dec;20(49):e2406042. doi: 10.1002/smll.202406042. Epub 2024 Sep 12. Small. 2024. PMID: 39263999
-
Enabling three-dimensional architected materials across length scales and timescales.Nat Mater. 2025 Apr;24(4):493-505. doi: 10.1038/s41563-025-02119-8. Epub 2025 Mar 12. Nat Mater. 2025. PMID: 40074881 Review.
-
Responsive materials architected in space and time.Nat Rev Mater. 2022;7(9):683-701. doi: 10.1038/s41578-022-00450-z. Epub 2022 Jun 20. Nat Rev Mater. 2022. PMID: 35757102 Free PMC article. Review.
Cited by
-
Additive Manufacturing-Enabled Advanced Design and Process Strategies for Multi-Functional Lattice Structures.Materials (Basel). 2024 Jul 9;17(14):3398. doi: 10.3390/ma17143398. Materials (Basel). 2024. PMID: 39063693 Free PMC article. Review.
-
Design of Flexible TPU-Based Lattice Structures for 3D Printing: A Comparative Analysis of Open-Cell Versus Closed-Cell Topologies.Polymers (Basel). 2025 Apr 22;17(9):1133. doi: 10.3390/polym17091133. Polymers (Basel). 2025. PMID: 40362917 Free PMC article.
-
Lightweight, Strong and Stiff Lattice Structures Inspired by Solid Solution Strengthening.Materials (Basel). 2025 Apr 27;18(9):1984. doi: 10.3390/ma18091984. Materials (Basel). 2025. PMID: 40363488 Free PMC article.
-
Non-contact ultrasound to assist laser additive manufacturing.Nat Commun. 2025 Aug 15;16(1):7613. doi: 10.1038/s41467-025-62803-w. Nat Commun. 2025. PMID: 40817090 Free PMC article.
-
Damage-programmable design of metamaterials achieving crack-resisting mechanisms seen in nature.Nat Commun. 2024 Aug 27;15(1):7373. doi: 10.1038/s41467-024-51757-0. Nat Commun. 2024. PMID: 39191786 Free PMC article.
References
-
- Cottrell, A. Dislocations and Plastic Flow in Crystals (Clarendon Press, New York, 1953).
-
- Argon, A. Strengthening Mechanisms in Crystal Plasticity (Oxford Univ. Press, New York, 2007). - DOI
-
- Dimiduk, D. M., Uchic, M. D. & Parthasarathy, T. A. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065–4077 (2005). - DOI
-
- Csikor, F. F., Motz, C., Weygand, D., Zaiser, M. & Zapperi, S. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318, 251–254 (2007). - DOI
-
- Pham, M. S., Holdsworth, S. R., Janssens, K. G. F. & Mazza, E. Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling. Int. J. Plasticity 47, 143–164 (2013). - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials