Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 1;26(Pt 1):74-82.
doi: 10.1107/S1600577518016077. Epub 2019 Jan 1.

The Adaptive Gain Integrating Pixel Detector at the European XFEL

Affiliations

The Adaptive Gain Integrating Pixel Detector at the European XFEL

Aschkan Allahgholi et al. J Synchrotron Radiat. .

Abstract

The Adaptive Gain Integrating Pixel Detector (AGIPD) is an X-ray imager, custom designed for the European X-ray Free-Electron Laser (XFEL). It is a fast, low-noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 104 photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.

Keywords: AGIPD; European XFEL; X-ray detector.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(a) CAD design of the AGIPD 1 million pixel detector with cuts to expose the arrangement of the electronics inside and outside of the vacuum vessel. (b) CAD model of the electronics of a single tile. (c) Photograph of a single tile using a two-port version of the vacuum backplane board.
Figure 2
Figure 2
(a) Photograph of the AGIPD 1 million pixel system at the SPB beamline before mounting to the experimental chamber. The sensitive area is split into four independently movable quadrants. (b) Wedge system of the bottom quadrants. (c) Cooling channels of a single cooling block before electroforming and milling connector feedthroughs. (d) 3D image of the pins inserted into the cooling channels to enhance the turbulence of the flow.
Figure 3
Figure 3
(a) Annotated macro photograph of the edge of a FEM. (b) FEMs and copper interposers for handling and mounting.
Figure 4
Figure 4
Schematics of the AGIPD 1.1 readout ASIC.
Figure 5
Figure 5
(a) Histogram of 10000 frames for a single memory cell of a single pixel illuminated with characteristic X-rays from molybdenum. The gain factor is derived from the mean peak-to-peak distance. (b) Using the internal current source all three gain levels can be sampled. (c) The pulsed capacitor samples only the high-gain state and parts of the medium-gain state. The non-ideal transition between the two gains is caused by the finite bandwidth of the calibration circuit.
Figure 6
Figure 6
(a) Mean of 10000 pedestal and gain corrected X-ray images of a PCB. (b) AGIPD quadrants during mounting of FEMs. The imaged PCB is visible. (c) Mean of 30000 X-ray images of a pen drive after pedestal, gain and flat-field correction.

References

    1. Allahgholi, A., Becker, J., Bianco, L., Delfs, A., Gottlicher, P., Graafsma, H., Hirsemann, H., Jack, S., Klyuev, A., Lange, S., Marras, A., Sheviakov, I., Trunk, U., Xia, Q., Zhang, J., Zimmer, M., Dinapoli, R., Greiffenberg, D., Mezza, D., Mozzanica, A., Schmitt, B., Shi, X., Klanner, R., Schwandt, J., Gronewald, M., Kruger, H. & Rah, S. (2014). 2014 IEEE Nucl. Sci. Symp. Med. Imaging Conf. pp. 4799–6097.
    1. Altarelli, M. (2011). Nucl. Instrum. Methods Phys. Res. B, 269, 2845–2849.
    1. Becker, J., Eckstein, D., Klanner, R. & Steinbrück, G. (2010). Nucl. Instrum. Methods Phys. Res. A, 615, 230–236.
    1. Becker, J., Gottlicher, P., Graafsma, H., Hirsemann, H., Jack, S., Klyuev, A., Lange, S., Marras, A., Nilsson, B., Tian, F., Trunk, U., Klanner, R., Schwandt, J., Zhang, J., Dinapoli, R., Greiffenberg, D., Henrich, B., Mozzanica, A., Schmitt, B., Shi, X., Gronewald, M., Karagounis, M. & Kruger, H. (2011). 2011 IEEE Nucl. Sci. Symp. Med. Imaging Conf. pp. 1950–1954.
    1. Blaj, G., Caragiulo, P., Carini, G., Dragone, A., Haller, G., Hart, P., Hasi, J., Herbst, R., Kenney, C., Markovic, B., Nishimura, K., Pines, J., Segal, J., Tamma, C. & Tomada, A. (2016). AIP Conf. Proc. 1741, 040012.