Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 1;25(19):5065-5070.
doi: 10.1002/chem.201806312. Epub 2019 Mar 12.

Comparing the Self-Assembly of Sexiphenyl-Dicarbonitrile on Graphite and Graphene on Cu(111)

Affiliations

Comparing the Self-Assembly of Sexiphenyl-Dicarbonitrile on Graphite and Graphene on Cu(111)

Nico Schmidt et al. Chemistry. .

Abstract

A comparative study on the self-assembly of sexiphenyl-dicarbonitrile on highly oriented pyrolytic graphite and single-layer graphene on Cu(111) is presented. Despite an overall low molecule-substrate interaction, the close-packed structures exhibit a peculiar shift repeating every four to five molecules. This shift has hitherto not been reported for similar systems and is hence a unique feature induced by the graphitic substrates.

Keywords: graphene; nanostructures; scanning probe microscopy; self-assembly; surface analysis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Chemical structure of sexiphenyl‐dicarbonitrile (NC‐Ph6‐CN).
Figure 1
Figure 1
Self‐assembly and electronic structure of NC‐Ph6‐CN on HOPG. a) Overview STM image (50×50 nm2, 3.2 V, 8 pA, 5 K). The molecules arranged into a close‐packed structure consisting of parallel rows. Grey lines highlight one row. b) High‐resolution STM image (10×10 nm2, 2.8 V, 3 pA, 5 K). The oblique unit cell of the structure is shown in green. Black lines indicate individual molecules. One row is highlighted by grey lines. c) Tentative structural model. The unit cell contains three molecules. Every fourth molecule within a row exhibits a shift. d) STS spectrum of a NC‐Ph6‐CN molecule (U set=3.5 mV, I set=150 pA). The spectrum was taken in the center of the molecule. The dotted lines denote the HOMO level at −4.6 V and the LUMO level at 3.1 V, respectively.
Figure 2
Figure 2
Self‐assembly of NC‐Ph6‐CN on graphene on Cu(111). a) High‐resolution STM image of phase 1 (20×20 nm2, 1.2 V, 20 pA, 77 K). The oblique unit cell is shown in cyan. One row of molecules is highlighted by grey lines. Black lines indicate individual molecules. b) High‐resolution STM image of phase 2 (20×20 nm2, −1.6 V, 20 pA, 77 K).55 The oblique unit cell is shown in magenta. c) Tentative structural model of phase 1. The unit cell of phase 1 contains three molecules. Every fourth molecule within a row exhibits a shift. d) Tentative structural model of phase 2. The unit cell of phase 2 contains four molecules. Every fifth molecule within a row exhibits a shift.
Figure 3
Figure 3
Computational results for NC‐Ph6‐CN. a) DFT gas‐phase calculations for NC‐Ph6‐CN using a hybrid functional51 and varying its Hartree–Fock (HF) exchange contribution.52 With increasing the HF exchange contribution the density of states of NC‐Ph6‐CN exhibits an increasing band gap. The spectra are offset for better visualization. b) NC‐Ph6‐CN adsorbed on graphene. The unit cell is marked in cyan.

Similar articles

Cited by

  • Low-Dimensional Metal-Organic Coordination Structures on Graphene.
    Li J, Solianyk L, Schmidt N, Baker B, Gottardi S, Moreno Lopez JC, Enache M, Monjas L, van der Vlag R, Havenith RWA, Hirsch AKH, Stöhr M. Li J, et al. J Phys Chem C Nanomater Interfaces. 2019 May 23;123(20):12730-12735. doi: 10.1021/acs.jpcc.9b00326. Epub 2019 Apr 30. J Phys Chem C Nanomater Interfaces. 2019. PMID: 31156737 Free PMC article.

References

    1. Novoselov K. S., Fal′ko V. I., Colombo L., Gellert P. R., Schwab M. G., Kim K., Nature 2012, 490, 192–200. - PubMed
    1. Ferrari A. C., Bonaccorso F., Fal′ko V., Novoselov K. S., Roche S., Boggild P., Borini S., Koppens F. H. L., Palermo V., Pugno N., Garrido J. A., Sordan R., Bianco A., Ballerini L., Prato M., Lidorikis E., Kivioja J., Marinelli C., Ryhanen T., Morpurgo A., Coleman J. N., Nicolosi V., Colombo L., Fert A., Garcia-Hernandez M., Bachtold A., Schneider G. F., Guinea F., Dekker C., Barbone M., Sun Z., Galiotis C., Grigorenko A. N., Konstantatos G., Kis A., Katsnelson M., Vandersypen L., Loiseau A., Morandi V., Neumaier D., Treossi E., Pellegrini V., Polini M., Tredicucci A., Williams G. M., Hong B. H., Ahn J.-H., Kim J. M., Zirath H., van Wees B. J., van der Zant H., Occhipinti L., Di Matteo A., Kinloch I. A., Seyller T., Quesnel E., Feng X., Teo K., Rupesinghe N., Hakonen P., Neil S. R. T., Tannock Q., Lofwander T., Kinaret J., Nanoscale 2015, 7, 4598–4810. - PubMed
    1. Schmidt N., Stöhr M. in Encycl. Interfacial Chem. Surf. Sci. Electrochem. (Ed.: K. Wandelt), Elsevier, 2018, pp. 110–119.
    1. Mali K. S., Greenwood J., Adisoejoso J., Phillipson R., De Feyter S., Nanoscale 2015, 7, 1566–1585. - PubMed
    1. Macleod J. M., Rosei F., Small 2014, 10, 1038–1049. - PubMed

LinkOut - more resources