Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 12;35(6):2129-2136.
doi: 10.1021/acs.langmuir.8b03806. Epub 2019 Feb 1.

Photocatalytic Degradation Enhancement in Pickering Emulsions Stabilized by Solid Particles of Bare TiO2

Affiliations

Photocatalytic Degradation Enhancement in Pickering Emulsions Stabilized by Solid Particles of Bare TiO2

Nidhal Fessi et al. Langmuir. .

Abstract

Pickering emulsions provide a new way to enhance the efficiency of photocatalytic degradation of water-insoluble pollutants. Indeed, the semiconductor solid particles dually act as the photocatalyst and stabilizer of the emulsion droplets whose size dramatically affects the photocatalytic reaction. The present work aims at the validation of this concept by using bare TiO2 without any surface modification. Nanostructured TiO2 has been prepared by a simple sol-gel process and characterized by X-ray diffraction, specific surface area analysis, scanning electron microscopy, and diffuse reflectance spectroscopy. The emulsions were prepared by using 1-methylnaphthalene (1-MN) as a model organic contaminant scarcely soluble in water and bare TiO2 as the photocatalyst/stabilizer. The emulsions have been characterized by electrical conductivity, optical microscopy, and light-scattering analyses. The photocatalytic degradation of 1-MN was 50 times faster in stable Pickering emulsions with respect to the case of biphasic liquid systems containing TiO2. This finding allows us to propose Pickering emulsions stabilized by TiO2 nanoparticles as an effective and novel way to intensify the photocatalytic degradation of water-insoluble organic pollutants.

PubMed Disclaimer

LinkOut - more resources