Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;23(1):75-86.
doi: 10.26355/eurrev_201901_16751.

Nanoscale bubble ultrasound contrast agents-mediated suicide gene therapy system, Nanoscale bubble-LV5-YCD-TK/GCV/5-FC, effectively inhibits bladder cancer cell growth

Affiliations
Free article

Nanoscale bubble ultrasound contrast agents-mediated suicide gene therapy system, Nanoscale bubble-LV5-YCD-TK/GCV/5-FC, effectively inhibits bladder cancer cell growth

Y-R Fu et al. Eur Rev Med Pharmacol Sci. 2019 Jan.
Free article

Abstract

Objective: Bladder cancer is the 2nd most common reason for human genitourinary cancer-associated mortality. This study aimed to investigate the effects of Nanoscale bubble ultrasound contrast agents-mediated yeast-cytosine-deaminase-thymidine kinase/ganciclovir (YCD-TK/GCV) or YCD-TK/5-fluorocytosine (5-FC) suicide gene therapy system on BIU-87 cell growth.

Materials and methods: Targeted nanoscale bubble ultrasound contrast agents were prepared by utilizing thin-film hydration-sonication approach. Nanoscale bubble-LV5-YCD-TK/GCV(5-FC) was constructed and transfected to BIU-87 cells. Hematoxylin and eosin (HE) staining was used to evaluate inflammation. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to examine cell viability. Cell-cycle distribution was analyzed with cell cycle assay. Flow cytometry assay was utilized to test apoptosis of BIU-87 cells. YCD-TK expression was examined using Western blot and quantitative Real Time-PCR (qRT-PCR), respectively.

Results: YCD-TK highly expressed in Nanoscale bubble mediated suicide gene therapy system. Nanoscale bubble-mediated suicide gene therapy system significantly induced inflammatory response and apoptosis compared to that of Nanoscale bubble group (p<0.05). Nanoscale bubble mediated suicide gene therapy system significantly reduced cell viability compared to that of the Nanoscale bubble group (p<0.05). Nanoscale bubble mediated suicide gene therapy system significantly inhibited cell cycle arrest compared to that of the Nanoscale bubble group (p<0.05). Nanoscale bubble-LV5-YCD-TK/GCV/5-FC therapy system significantly reduced BIU-87 cell viability compared to that of the Nanoscale bubble-associated groups (p<0.05).

Conclusions: Nanoscale bubble-mediated suicide gene therapy system, bubble-LV5-YCD-TK/GCV/5-FC, acts as a novel therapeutic strategy for bladder cancer treatment.

PubMed Disclaimer

Similar articles

MeSH terms