Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;116(5):1245-1252.
doi: 10.1002/bit.26929. Epub 2019 Jan 30.

Unveiling the molecular crosstalk in a human induced pluripotent stem cell-derived cardiac model

Affiliations

Unveiling the molecular crosstalk in a human induced pluripotent stem cell-derived cardiac model

Bernardo Abecasis et al. Biotechnol Bioeng. 2019 May.

Abstract

In vitro cell-based models that better mimic the human heart tissue are of utmost importance for drug development and cardiotoxicity testing but also as tools to understand mechanisms related with heart disease at cellular and molecular level. Besides, the implementation of analytical tools that allow the depiction and comprehensive understanding of the molecular mechanisms of the crosstalk between the different cell types is also relevant. In this work, we implemented a human cardiac tissue-like in vitro model, derived from human-induced pluripotent stem cell (hiPSC), and evaluated the relevance of the cell-cell communication between the two of the most representative cell populations of the human heart: cardiomyocytes (hiPSC-CM) and endothelial cells (hiPSC-EC). We observed that heterotypic cell communication promotes: (a) structural maturation of hiPSC-CM and (b) deposition of several extracellular matrix components (such as collagens and fibronectin). Overall, the toolbox of analytical techniques used in our study not only enabled us to validate previous reports from the literature on the importance of the presence of hiPSC-EC on hiPSC-CM maturation, but also bring new insights on the molecular mechanisms involved in the communication between these two cell types when cocultured in vitro.

Keywords: cardiomyocytes; cocultures; endothelial cells; mass spectrometry-based proteomics; maturation.

PubMed Disclaimer

Publication types

LinkOut - more resources