Impact of the functionalization onto structure transformation and gas adsorption of MIL-68(In)
- PMID: 30662743
- PMCID: PMC6304125
- DOI: 10.1098/rsos.181378
Impact of the functionalization onto structure transformation and gas adsorption of MIL-68(In)
Abstract
A series of functionalization -NH2, -Br and -NO2 has been performed on MIL-68(In) material in order to improve the porosity features of the pristine material. The functional groups grafted onto the ligand and the molar ratios of the ingredient indicate a profound influence on product formation. With the incremental amount of metal source, product structures undergo the transformation from MIL-68 to MIL-53 or QMOF-2. The situation is different depending on the variation of the ligands. Gas (N2, Ar, H2 and CO2) adsorption-desorption isotherms were systematically investigated to explore the impact of the functionalization on the porous prototypical framework. Comparison of adsorption behaviour of N2 and Ar indicates that the polar molecule exhibits striking interaction to N2 molecule, which has a considerable quadrupole moment. Therefore, as a probe molecule, Ar with no quadrupole moment is more suitable to characterize the surface area with the polar groups. Meanwhile, Ar adsorption result confirms that the negative influence on the surface area stems from the size of the substituting groups. The uptake of H2 and CO2 indicates that the introduction of appropriate polar organic groups can effectively enhance the adsorption enthalpy of relative gases and improve the gas adsorption capacity apparently at low pressure. The introduction of -NO2 is in favour of improving the H2 adsorption capacity, while the grafted -NH2 groups can most effectively enhance the CO2 adsorption capacity.
Keywords: MIL-68(In)_X; MOFs; functionalization; gas adsorption; structure transformation.
Conflict of interest statement
We declare we have no competing interests.
Figures






Similar articles
-
Programming MIL-101Cr for selective and enhanced CO2 adsorption at low pressure by postsynthetic amine functionalization.Dalton Trans. 2014 Jan 21;43(3):1338-47. doi: 10.1039/c3dt52365a. Epub 2013 Nov 6. Dalton Trans. 2014. PMID: 24196659
-
New functionalized MIL-53(In) solids: syntheses, characterization, sorption, and structural flexibility.RSC Adv. 2019 Jan 15;9(4):1918-1928. doi: 10.1039/c8ra08522f. eCollection 2019 Jan 14. RSC Adv. 2019. PMID: 35516115 Free PMC article.
-
Zirconium and Aluminum MOFs for Low-Pressure SO2 Adsorption and Potential Separation: Elucidating the Effect of Small Pores and NH2 Groups.ACS Appl Mater Interfaces. 2021 Jun 23;13(24):29137-29149. doi: 10.1021/acsami.1c06003. Epub 2021 Jun 11. ACS Appl Mater Interfaces. 2021. PMID: 34115467
-
Aluminum-based metal-organic frameworks for adsorptive removal of anti-cancer (methotrexate) drug from aqueous solutions.J Environ Manage. 2021 Jan 1;277:111448. doi: 10.1016/j.jenvman.2020.111448. Epub 2020 Nov 3. J Environ Manage. 2021. PMID: 33254841
-
Theoretical Investigations on MIL-100(M) (M=Cr, Sc, Fe) with High Adsorption Selectivity for Nitrogen and Carbon Dioxide over Methane.Chem Asian J. 2023 Jan 3;18(1):e202200985. doi: 10.1002/asia.202200985. Epub 2022 Nov 24. Chem Asian J. 2023. PMID: 36326487
Cited by
-
Cyclometalation of lanthanum(iii) based MOF for catalytic hydrogenation of carbon dioxide to formate.RSC Adv. 2020 Jan 22;10(6):3593-3605. doi: 10.1039/c9ra09938g. eCollection 2020 Jan 16. RSC Adv. 2020. PMID: 35497735 Free PMC article.
-
Functionalization of MOF-5 with mono-substituents: effects on drug delivery behavior.RSC Adv. 2020 Oct 7;10(60):36862-36872. doi: 10.1039/d0ra06106a. eCollection 2020 Oct 1. RSC Adv. 2020. PMID: 35517920 Free PMC article.
-
In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al).RSC Adv. 2020 Feb 19;10(13):7336-7348. doi: 10.1039/c9ra09968a. eCollection 2020 Feb 18. RSC Adv. 2020. PMID: 35492146 Free PMC article.
-
A Refined Set of Universal Force Field Parameters for Some Metal Nodes in Metal-Organic Frameworks.J Chem Theory Comput. 2024 Dec 10;20(23):10540-10552. doi: 10.1021/acs.jctc.4c01113. Epub 2024 Nov 27. J Chem Theory Comput. 2024. PMID: 39601035 Free PMC article.
References
-
- Gygi D, et al. 2016. Hydrogen storage in the expanded pore metal–organic frameworks M2(dobpdc) (M=Mg, Mn, Fe, Co, Ni, Zn). Chem. Mater. 28, 1128– 1138. (10.1021/acs.chemmater.5b04538) - DOI
-
- Allen AJ, Espinal L, Wong-Ng W, Queen WL, Brown CM, Kline SR, Kauffman KL, Culp JT, Matranga C. 2015. Flexible metal-organic framework compounds: in situ studies for selective CO2 capture. J. Alloys Compd. 647, 24–34. (10.1016/j.jallcom.2015.05.148) - DOI
-
- Wong-Ng W, Levin I, Kaduk JA, Espinal L, Wu H. 2016. CO2 capture and positional disorder in Cu3(1,3,5-benzenetricarboxylate)2: an in situ laboratory X-ray powder diffraction study. J. Alloys Compd. 656, 200–205. (10.1016/j.jallcom.2015.09.078) - DOI
-
- Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM. 2017. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 17045 (10.1038/natrevmats.2017.45) - DOI
Associated data
LinkOut - more resources
Full Text Sources
Research Materials