Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 20;38(11):1918-1934.
doi: 10.1002/sim.8089. Epub 2019 Jan 21.

Accounting for a decaying correlation structure in cluster randomized trials with continuous recruitment

Affiliations

Accounting for a decaying correlation structure in cluster randomized trials with continuous recruitment

Kelsey L Grantham et al. Stat Med. .

Abstract

A requirement for calculating sample sizes for cluster randomized trials (CRTs) conducted over multiple periods of time is the specification of a form for the correlation between outcomes of subjects within the same cluster, encoded via the within-cluster correlation structure. Previously proposed within-cluster correlation structures have made strong assumptions; for example, the usual assumption is that correlations between the outcomes of all pairs of subjects are identical ("uniform correlation"). More recently, structures that allow for a decay in correlation between pairs of outcomes measured in different periods have been suggested. However, these structures are overly simple in settings with continuous recruitment and measurement. We propose a more realistic "continuous-time correlation decay" structure whereby correlations between subjects' outcomes decay as the time between these subjects' measurement times increases. We investigate the use of this structure on trial planning in the context of a primary care diabetes trial, where there is evidence of decaying correlation between pairs of patients' outcomes over time. In particular, for a range of different trial designs, we derive the variance of the treatment effect estimator under continuous-time correlation decay and compare this to the variance obtained under uniform correlation. For stepped wedge and cluster randomized crossover designs, incorrectly assuming uniform correlation will underestimate the required sample size under most trial configurations likely to occur in practice. Planning of CRTs requires consideration of the most appropriate within-cluster correlation structure to obtain a suitable sample size.

Keywords: clinical trial design; cluster randomized trial; crossover design; sample size; stepped wedge design; within-cluster correlation.

PubMed Disclaimer

Publication types