Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 12;19(4):598-607.
doi: 10.1039/c8lc01255e.

Three-dimensional origami paper-based device for portable immunoassay applications

Affiliations

Three-dimensional origami paper-based device for portable immunoassay applications

Chung-An Chen et al. Lab Chip. .

Abstract

In this study, we demonstrate a three-dimensional surface-modified origami-paper-based analytical device (3D-soPAD) for immunoassay applications. The platform enables the sequential steps of immunoassays to be easily performed using a folded, sliding paper design featuring multiple pre-stored reagents, allowing us to take advantage of the vertical diffusion of the analyte through the different paper layers. The cellulose substrate is composed of carboxymethyl cellulose modified with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide, which provide covalent bonding sites for bio-recognition molecules. After the optimization of the operation parameters, we determined the detection limit of the 3D-soPAD for human immunoglobulin G (HIgG) which can be as low as 0.01 ng mL-1, with a total turnaround time of 7 min. In order to study the long-term storage of the platform, anti-HIgG horseradish peroxidase (aHIgG-HRP) conjugates were stored by freeze-drying in sugar matrices composed of 10% sucrose/10% trehalose (w/w%) on the paper device, retaining 80% of their activity after 75 days of storage at 4 °C. To evaluate the performance of the paper device using real samples, we demonstrated the detection of protein A (a biomarker for Staphylococcus aureus infection) in highly viscous human synovial fluid. These results show that the proposed 3D-soPAD platform can provide sensitive, high-throughput, and on-site prognosis of infection in resource-limited settings.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources