Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 21;11(1):2.
doi: 10.1186/s11689-018-9261-x.

Static and dynamic postural control deficits in aging fragile X mental retardation 1 (FMR1) gene premutation carriers

Affiliations

Static and dynamic postural control deficits in aging fragile X mental retardation 1 (FMR1) gene premutation carriers

Zheng Wang et al. J Neurodev Disord. .

Abstract

Background: Individuals with premutation alleles of the fragile X mental retardation 1 (FMR1) gene are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS) during aging. Characterization of motor issues associated with aging in FMR1 premutation carriers is needed to determine neurodegenerative processes and establish new biobehavioral indicators to help identify individuals at greatest risk of developing FXTAS.

Methods: We examined postural stability in 18 premutation carriers ages 46-77 years and 14 age-matched healthy controls. Participants completed a test of static stance and two tests of dynamic postural sway on a force platform to quantify postural variability and complexity. CGG repeat length was measured for each premutation carrier, and MRI and neurological evaluations were conducted to identify carriers who currently met criteria for FXTAS. Of the 18 premutation carriers, seven met criteria for definite/probable FXTAS (FXTAS+), seven showed no MRI or neurological signs of FXTAS (FXTAS-), and four were inconclusive due to insufficient data.

Results: Compared to controls, premutation carriers showed increased center of pressure (COP) variability in the mediolateral (COPML) direction during static stance and reduced COP variability in the anterior-posterior (COPAP) direction during dynamic AP sway. They also showed reductions in COPML complexity during each postural condition. FXTAS+ individuals showed reduced COPAP variability compared to FXTAS- carriers and healthy controls during dynamic AP sway. Across all carriers, increased sway variability during static stance and decreased sway variability in target directions during dynamic sways were associated with greater CGG repeat length and more severe neurologically rated posture and gait abnormalities.

Conclusion: Our findings indicate that aging FMR1 premutation carriers show static and dynamic postural control deficits relative to healthy controls implicating degenerative processes of spinocerebellar and cerebellar-brainstem circuits that may be independent of or precede the onset of FXTAS. Our finding that FXTAS+ and FXTAS- premutation carriers differed on their level of intentional AP sway suggests that neural mechanisms of dynamic postural control may be differentially impacted in patients with FXTAS, and its measurement may be useful for rapidly and precisely identifying disease presence and onset.

Keywords: Cerebellum; FMR1gene premutation allele; Fragile X mental retardation 1 (FMR1) gene; Fragile X-associated tremor/ataxia syndrome (FXTAS); Postural control.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

All study procedures were approved by the Institutional Review Boards at the UT Southwestern Medical Center and Children’s Hospital of Dallas. Written consent was obtained from each adult individual before the administration of test and evaluations.

Consent for publication

Not applicable.

Competing interests

Dr. Wang serves as a co-investigator on an investigator-initiated award studying Phelan-McDermid Syndrome from Novartis. Dr. Mosconi serves as a consultant on this award. The other authors declare that they have no competing interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig.1
Fig.1
a Center of pressure (COP) standard deviation in the anterior-posterior (AP) and mediolateral (ML) directions. b The α exponent of detrended fluctuation analysis (DFA) of COP time series in both directions are shown as a function of standing condition. FMR1 stands for FMR1 premutation carriers. Between-group differences are marked as * at 0.05 level and ** at 0.01 level. Error bars represent standard error
Fig. 2
Fig. 2
Scatter plots of significant statistical correlations presented in Table 3. Data were color-coded based on the diagnostic classification of each individual FMR1 premutation carrier. ICARS scores were missing for two inconclusive individuals due to scheduling issues
Fig. 3
Fig. 3
Scatter plot of COP standard deviation in AP directions during dynamic AP sway. Data are color-coded based on the diagnostic classification of FMR1 premutation carriers and healthy controls. Box plots show (left to right) the minimum (cap), first quartile, median, third quartile, and maximum (cap) values of each group. Two data points in the control group were located outside of the 1.5× inter-quartile range

Similar articles

Cited by

References

    1. Diener HC, Dichgans BJ, Bacher M, Gompf B. Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol. 1984;57:134–142. doi: 10.1016/0013-4694(84)90172-X. - DOI - PubMed
    1. Narcisa V, Aguilar D, Nguyen DV, Campos L, Brodovsky J, White S, et al. A quantitative assessment of tremor and ataxia in female FMR1 premutation carriers using CATSYS. Curr Gerontol Geriatr Res. 2011;2011:484713. doi: 10.1155/2011/484713. - DOI - PMC - PubMed
    1. Tabolacci E, Palumbo F, Nobile V, Neri G. Transcriptional reactivation of the FMR1 gene. A possible approach to the treatment of the fragile X syndrome. Genes (Basel). 2016;7(8). 10.3390/genes7080049. - PMC - PubMed
    1. Schmitt LM, Cook EH, Sweeney JA, Mosconi MW. Saccadic eye movement abnormalities in autism spectrum disorder indicate dysfunctions in both cerebellum and brainstem. Molecular Autism. 2014;5:47. doi: 10.1186/2040-2392-5-47. - DOI - PMC - PubMed
    1. Birch RC, Hocking DR, Cornish KM, Menant JC, Georgiou-Karistianis N, Godler DE, et al. Preliminary evidence of an effect of cerebellar volume on postural sway in FMR1 premutation males. Genes Brain Behav. 2015;14(3):251–259. doi: 10.1111/gbb.12204. - DOI - PubMed

Publication types

MeSH terms

Substances

Supplementary concepts