Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020:1980:153-172.
doi: 10.1007/7651_2018_205.

Metabolic Engineering of Microalgae for Biofuel Production

Affiliations

Metabolic Engineering of Microalgae for Biofuel Production

Mohammad Pooya Naghshbandi et al. Methods Mol Biol. 2020.

Abstract

Microalgae are considered as promising cell factories for the production of various types of biofuels, including bioethanol, biodiesel, and biohydrogen by using carbon dioxide and sunlight. In spite of unique advantages of these microorganisms, the commercialization of microalgal biofuels has been hindered by poor economic features. Metabolic engineering is among the most promising strategies put forth to overcome this challenge. In this chapter, metabolic pathways involved in lipid and hydrogen production by microalgae are reviewed and discussed. Moreover, metabolic and genetic engineering approaches investigated for improving the rate of lipid (as a feedstock for biodiesel production) and biohydrogen synthesis are presented. Finally, genetic engineering tools and approaches employed for engineering microalgal metabolic pathways are elaborated. A thorough step-by-step protocol for reconstructing the metabolic pathway of various microorganisms including microalgae is also presented.

Keywords: Biodiesel; Biohydrogen; Genetic engineering; Metabolic engineering; Microalgae.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources