Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 15:54:302-307.
doi: 10.1016/j.phymed.2018.09.236. Epub 2018 Oct 9.

Butenolides from Nectandra oppositifolia (Lauraceae) displayed anti-Trypanosoma cruzi activity via deregulation of mitochondria

Affiliations

Butenolides from Nectandra oppositifolia (Lauraceae) displayed anti-Trypanosoma cruzi activity via deregulation of mitochondria

Geanne A Alves Conserva et al. Phytomedicine. .

Abstract

Background: From a previous screening of Brazilian biodiversity for antitrypanosomal activity, the n-hexane extract from twigs of Nectandra oppositifolia (Lauraceae) demonstrated in vitro activity against Trypanosoma cruzi.

Purpose: To perform the isolation and chemical characterization of bioactive compounds from n-hexane extract from twigs of N. oppositifolia and evaluate their therapeutical potential as well as to elucidate their mechanism of action against T. cruzi.

Methods/study design: Bioactivity-guided fractionation of the n-hexane extract from twigs of N. oppositifolia afforded three related butenolides: isolinderanolide D (1), isolinderanolide E (2) and secosubamolide A (3). These compounds were evaluated in vitro against T. cruzi (trypomastigote and amastigote forms) and against NCTC (L929) cells for mammalian cytotoxicity. Additionally, phenotypic analyzes of compounds-treated parasites were performed: alterations in the plasma membrane permeability, plasma membrane electric potential (ΔΨp), mitochondrial membrane potential (ΔΨm) and induction of ROS.

Results: Compounds 1-3 were effective against T. cruzi, with IC50 values of 12.9, 29.9 and 12.5 µM for trypomastigotes and 25.3, 10.1 and 12.3 µM for intracellular amastigotes. Furthermore, it was observed alteration in the mitochondrial membrane potential (ΔΨm) of parasites treated with butenolides 1-3. These compounds caused no alteration to the parasite plasma membrane, and the deregulation of the mitochondria might be an early event to cell death. In addition, in silico studies showed that all butenolides were predicted to be non-mutagenic, non-carcinogenic, non hERG blockers, with acceptable human intestinal absorption, low inhibitory promiscuity with the main five CYP isoforms, and with high metabolic stability. Otherwise, tested butenolides showed unfavorable blood-brain barrier penetration (BBB+).

Conclusion: Our results demonstrated the anti-T. cruzi effects of compounds 1-3 isolated from N. oppositifolia and indicated that the lethal effect of these compounds in trypomastigotes of T. cruzi could be associated to the alteration in the mitochondrial membrane potential (ΔΨm).

Keywords: Anti-Trypanosoma activity; Butenolides; In silico ADMET; Mitochondrial membrane potential; Nectandra oppositifolia.

PubMed Disclaimer

MeSH terms

LinkOut - more resources