Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice
- PMID: 30670156
- PMCID: PMC6405207
- DOI: 10.1016/j.freeradbiomed.2018.06.032
Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice
Abstract
Mice lacking Cu/Zn-superoxide dismutase (Sod1-/- or Sod1KO mice) show high levels of oxidative stress/damage and a 30% decrease in lifespan. The Sod1KO mice also show many phenotypes of accelerated aging with the loss of muscle mass and function being one of the most prominent aging phenotypes. Using various genetic models targeting the expression of Cu/Zn-superoxide dismutase to specific tissues, we evaluated the role of motor neurons and skeletal muscle in the accelerated loss of muscle mass and function in Sod1KO mice. Our data are consistent with the sarcopenia in Sod1KO mice arising through a two-hit mechanism involving both motor neurons and skeletal muscle. Sarcopenia is initiated in motor neurons leading to a disruption of neuromuscular junctions that results in mitochondrial dysfunction and increased generation of reactive oxygen species (ROS) in skeletal muscle. The mitochondrial ROS generated in muscle feedback on the neuromuscular junctions propagating more disruption of neuromuscular junctions and more ROS production by muscle resulting in a vicious cycle that eventually leads to disaggregation of neuromuscular junctions, denervation, and loss of muscle fibers.
Published by Elsevier Inc.
Figures





References
-
- Fagg GE, Scheff SW, Cotman CW, Axonal sprouting at the neuromuscular junction of adult and aged rats, Exp. Neurol 74 (1981) 847–854. - PubMed
-
- Fulle S, Protasi F, Di Tano G, Pietrangelo T, Beltramin A, Boncompagni S, Vecchiet L, Fanò G, The contribution of reactive oxygen species to sarcopenia and muscle ageing, Exp. Gerontol 39 (2004) 17–24. - PubMed
-
- Jang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, Liang H, Salmon AB, Brooks SV, Larkin L, Hayworth CR, Richardson A, Van Remmen H, Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration, FASEB J 24 (2010) 1376–1390. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous