Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 8:12:102.
doi: 10.3389/fninf.2018.00102. eCollection 2018.

An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group

Premika S W Boedhoe  1   2 Martijn W Heymans  3 Lianne Schmaal  4   5 Yoshinari Abe  6 Pino Alonso  7   8   9 Stephanie H Ameis  10   11 Alan Anticevic  12 Paul D Arnold  13   14 Marcelo C Batistuzzo  15 Francesco Benedetti  16 Jan C Beucke  17 Irene Bollettini  16 Anushree Bose  18 Silvia Brem  19 Anna Calvo  20 Rosa Calvo  8   21 Yuqi Cheng  22 Kang Ik K Cho  23 Valentina Ciullo  24   25 Sara Dallaspezia  16 Damiaan Denys  26   27 Jamie D Feusner  28 Kate D Fitzgerald  29 Jean-Paul Fouche  30 Egill A Fridgeirsson  26 Patricia Gruner  12 Gregory L Hanna  29 Derrek P Hibar  31 Marcelo Q Hoexter  15 Hao Hu  32 Chaim Huyser  33   34 Neda Jahanshad  35 Anthony James  36 Norbert Kathmann  17 Christian Kaufmann  17 Kathrin Koch  37   38 Jun Soo Kwon  39   40 Luisa Lazaro  8   21   41   42 Christine Lochner  43 Rachel Marsh  44   45 Ignacio Martínez-Zalacaín  7 David Mataix-Cols  46 José M Menchón  7   8   9 Luciano Minuzzi  47 Astrid Morer  8   21   41 Takashi Nakamae  6 Tomohiro Nakao  48 Janardhanan C Narayanaswamy  18 Seiji Nishida  6 Erika L Nurmi  28 Joseph O'Neill  28 John Piacentini  28 Fabrizio Piras  24 Federica Piras  24 Y C Janardhan Reddy  18 Tim J Reess  37   38 Yuki Sakai  6   49 Joao R Sato  50 H Blair Simpson  44   51 Noam Soreni  52 Carles Soriano-Mas  7   8   53 Gianfranco Spalletta  24   54 Michael C Stevens  55   56 Philip R Szeszko  57   58 David F Tolin  55   59 Guido A van Wingen  26 Ganesan Venkatasubramanian  18 Susanne Walitza  19 Zhen Wang  32   60 Je-Yeon Yun  35   39 ENIGMA-OCD Working-GroupPaul M Thompson  31 Dan J Stein  30 Odile A van den Heuvel  1   2 Jos W R Twisk  3
Affiliations

An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group

Premika S W Boedhoe et al. Front Neuroinform. .

Abstract

Objective: Brain imaging communities focusing on different diseases have increasingly started to collaborate and to pool data to perform well-powered meta- and mega-analyses. Some methodologists claim that a one-stage individual-participant data (IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis, since more detailed computations can be performed in a mega-analysis. Before definitive conclusions regarding the performance of either method can be drawn, it is necessary to critically evaluate the methodology of, and results obtained by, meta- and mega-analyses. Methods: Here, we compare the inverse variance weighted random-effect meta-analysis model with a multiple linear regression mega-analysis model, as well as with a linear mixed-effects random-intercept mega-analysis model, using data from 38 cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the effect sizes and standard errors, and the fit of the models, to evaluate the performance of the different methods. Results: The mega-analytical models showed lower standard errors and narrower confidence intervals than the meta-analysis. Similar standard errors and confidence intervals were found for the linear regression and linear mixed-effects random-intercept models. Moreover, the linear mixed-effects random-intercept models showed better fit indices compared to linear regression mega-analytical models. Conclusions: Our findings indicate that results obtained by meta- and mega-analysis differ, in favor of the latter. In multi-center studies with a moderate amount of variation between cohorts, a linear mixed-effects random-intercept mega-analytical framework appears to be the better approach to investigate structural neuroimaging data.

Keywords: IPD meta-analysis; MRI; linear mixed-effect models; mega-analysis; neuroimaging.

PubMed Disclaimer

References

    1. Agresti A., Hartzel J. (2000). Strategies for comparing treatments on a binary response with multi centre data. Stat. Med. 19, 1115–1139. 10.1002/(SICI)1097-0258(20000430)19:83.0.CO;2-X - DOI - PubMed
    1. Barnes J., Ridgway G. R., Bartlett J., Henley S. M., Lehmann M., Hobbs N., et al. . (2010). Head size, age and gender adjustment in MRI studies: a necessary nuisance? Neuroimage 53, 1244–1255. 10.1016/j.neuroimage.2010.06.025 - DOI - PubMed
    1. Boedhoe P. S., Schmaal L., Abe Y., Alonso P., Ameis S. H., Anticevic A., et al. . (2018). Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: findings from the ENIGMA Obsessive-Compulsive Disorder Working Group. Am. J. Psychiatry 175, 453–462. 10.1176/appi.ajp.2017.17050485 - DOI - PMC - PubMed
    1. Boedhoe P. S., Schmaal L., Abe Y., Ameis S. H., Arnold P. D., Batistuzzo M. C., et al. . (2017a). Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. Am. J. Psychiatry 174, 60–69. 10.1176/appi.ajp.2016.16020201 - DOI - PMC - PubMed
    1. Boedhoe P. S., Schmaal L., Mataix-Cols D., Jahanshad N., ENIGMA OCD Working Group. Thompson P. M., et al. . (2017b). Association and causation in brain imaging in the case of OCD: response to McKay et al. Am. J. Psychiatry 174, 597–599. 10.1176/appi.ajp.2017.17010019r - DOI - PMC - PubMed