Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jan 1;11(1):e2019002.
doi: 10.4084/MJHID.2019.002. eCollection 2019.

New Therapeutic Options for the Treatment of Sickle Cell Disease

Affiliations
Review

New Therapeutic Options for the Treatment of Sickle Cell Disease

Alessandro Matte et al. Mediterr J Hematol Infect Dis. .

Abstract

Sickle cell disease (SCD; ORPHA232; OMIM # 603903) is a chronic and invalidating disorder distributed worldwide, with high morbidity and mortality. Given the disease complexity and the multiplicity of pathophysiological targets, development of new therapeutic options is critical, despite the positive effects of hydroxyurea (HU), for many years the only approved drug for SCD. New therapeutic strategies might be divided into (1) pathophysiology-related novel therapies and (2) innovations in curative therapeutic options such as hematopoietic stem cell transplantation and gene therapy. The pathophysiology related novel therapies are: a) Agents which reduce sickling or prevent sickle red cell dehydration; b) Agents targeting SCD vasculopathy and sickle cell-endothelial adhesive events; c) Anti-oxidant agents. This review highlights new therapeutic strategies in SCD and discusses future developments, research implications, and possible innovative clinical trials.

Keywords: Hemoglobinopathy; Hydroxyurea; Selectin inhibitors; Sickle cell disease; Vaso-occlusive events.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors have declared that no competing interests exist. Competing Interests and Funding. The Authors declare that they have no conflict of interest. This work was supported by FUR-UNIVR (LDF).

Figures

Figure 1
Figure 1
Schematic diagram of the mechanisms involved in the pathogenesis of acute sickle cell related vaso-occlusive events. These involve the adherence of sickle red blood cells (RBCs) or reticulocytes and neutrophils to the abnormally activated endothelial cells, with the participation of activated and phosphatidyl- Serine (PS)-rich platelets (PLTs), activation of the coagulation system, and activation of a cytokine storm. PS: Phosphatidyl-Serine; TSP: thrombospondine; vWF: von Willebrand factor; BCAM/LU: Lutheran blood group protein; ICAM-4: Landstein-Weiner (LW) blood group glycoprotein; MPs: microparticles; Mac1: β2 integrins (αMβ2 or CD11b/CD18); ESL-1: neutrophil E-selectin ligand -1; Hb: hemoglobin; ROS: reactive oxygen species; iNKT: invariant natural killer T cells; ET-1: endothelin-1; NO: nitric oxide (modified from De Franceschi L et al. Seminars in Thrombosis, 37: 266; 2011).
Figure 2
Figure 2
Schematic diagram of multimodal therapeutic action of hydroxyurea (HU) in sickle cell disease. ROS: reactive oxygen species; Hb: hemoglobin; NO: nitric oxide; HbS: sickle hemoglobin; HbF: fetal hemoglobin.
Figure 3
Figure 3
Schematic diagram of the mechanisms of action of pathophysiology based new therapeutic options for treatment of sickle cell disease and sickle cell vasculopathy. Hp: haptoglobin; Hx: hemopexin; NAC: N-Acetyl-cysteine; Ab: antibody; ROS: reactive oxygen species; iNKT: invariant natural killer T cells; NKTT120: humanized monoclonal antibody specifically depleting iNKT; NO: nitric oxide; ET-1: endothelin-1; ET-R: endothelin-1 receptor.

Similar articles

Cited by

References

    1. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bulletin of the World Health Organization. 2008;86:480–487. doi: 10.2471/BLT.06.036673. - DOI - PMC - PubMed
    1. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–2223. doi: 10.1016/S0140-6736(12)61689-4. - DOI - PubMed
    1. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bulletin of the World Health Organization. 2001;79:704–712. - PMC - PubMed
    1. Piel FB, Patil AP, Howes RE, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;381:142–151. doi: 10.1016/S0140-6736(12)61229-X. - DOI - PMC - PubMed
    1. De Franceschi L, Cappellini MD, Olivieri O. Thrombosis and sickle cell disease. Semin Thromb Hemost. 2011;37:226–236. doi: 10.1055/s-0031-1273087. - DOI - PubMed