Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr;33(2):207-219.
doi: 10.1007/s10557-018-06846-w.

High-Density Lipoprotein Function and Dysfunction in Health and Disease

Affiliations
Review

High-Density Lipoprotein Function and Dysfunction in Health and Disease

Scott T Chiesa et al. Cardiovasc Drugs Ther. 2019 Apr.

Abstract

High-density lipoprotein cholesterol (HDL-c) has long been referred to as 'good cholesterol' due to its apparent inverse relationship with future CVD risk. More recent research has questioned a causal role for HDL-c in this relationship, however, as both genetic studies and numerous large-scale randomised controlled trials have found no evidence of a cardiovascular protective effect when HDL-c levels are raised. Instead, focus has switched to the functional properties of the HDL particle. Evidence suggests that both the composition and function of HDL may be significantly altered in the context of an inflammatory milieu, transforming the particle from a vasoprotective anti-atherogenic particle to a noxious pro-atherogenic equivalent. This review will summarise evidence relating HDL to CVD risk, explore recent evidence characterising changes in the composition and function of HDL that may occur in chronic inflammatory diseases, and discuss the potential for future HDL-modifying therapeutic interventions.

Keywords: Atherosclerosis; Cardiovascular disease; HDL dysfunction; Inflammation.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest

The authors declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Potential mechanisms linking dysfunctional HDL to vascular damage. In the absence of inflammation (top), HDL exerts vascular protective effects through its ability to increase endothelial NO bioavailability, decrease oxidative stress, and inhibit the expression of adhesion molecules on the vascular wall. In inflammatory states (bottom), however, numerous structural and functional changes may occur and compromise endothelial function. Beneficial proteins contained within the particle (e.g. ApoA-I, PON-1) are liable for oxidation or replacement, resulting in a noxious particle which impairs NO generation, amplifies oxidative stress, and promotes adhesion molecule expression and monocyte infiltration across the vascular wall
Fig. 2
Fig. 2
Mechanistic pathways underlying reverse cholesterol transport from macrophages to liver. HDL-mediated RCT involves the removal of cholesterol from lipid-laden macrophages, where it may then be transported back to the liver for biliary excretion. In healthy individuals, nascent and mature HDL particles accept cholesterol from lipid-laden macrophages within the vascular wall via an interaction of ApoA-I with ABCA1 and ABCG1 receptors. Following their esterification by the enzyme LCAT, these cholesterol particles may undergo selective uptake to the liver via the interaction of HDL and hepatic SR-BI, or may be transferred by CETP to VLDL/LDL for hepatic uptake via LDL-R. In conditions of chronic disease or inflammation, numerous changes in this pathway have been observed that may render it dysfunctional and potentially increase atherosclerotic risk. These changes include the oxidation or displacement of ApoA-I, alterations in the activity of enzymes such as LCAT or CETP, and reduced binding of HDL to receptors such as ABCG1 or SR-BI

Similar articles

Cited by

References

    1. Haase CL, Tybjærg-Hansen A, Ali Qayyum A, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97:E248–E256. - PubMed
    1. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, Hindy G, Hólm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke R, Hopewell JC, Thompson JF, Li M, Thorleifsson G, Newton-Cheh C, Musunuru K, Pirruccello JP, Saleheen D, Chen L, Stewart AFR, Schillert A, Thorsteinsdottir U, Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, Stoll M, Berger K, Martinelli N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J, Burnett MS, Mooser V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki ML, Perola M, Havulinna A, de Faire U, Gigante B, Ingelsson E, Zeller T, Wild P, de Bakker PIW, Klungel OH, Maitland-van der Zee AH, Peters BJM, de Boer A, Grobbee DE, Kamphuisen PW, Deneer VHM, Elbers CC, Onland-Moret NC, Hofker MH, Wijmenga C, Verschuren WMM, Boer JMA, van der Schouw YT, Rasheed A, Frossard P, Demissie S, Willer C, Do R, Ordovas JM, Abecasis GR, Boehnke M, Mohlke KL, Daly MJ, Guiducci C, Burtt NP, Surti A, Gonzalez E, Purcell S, Gabriel S, Marrugat J, Peden J, Erdmann J, Diemert P, Willenborg C, König IR, Fischer M, Hengstenberg C, Ziegler A, Buysschaert I, Lambrechts D, van de Werf F, Fox KA, el Mokhtari NE, Rubin D, Schrezenmeir J, Schreiber S, Schäfer A, Danesh J, Blankenberg S, Roberts R, McPherson R, Watkins H, Hall AS, Overvad K, Rimm E, Boerwinkle E, Tybjaerg-Hansen A, Cupples LA, Reilly MP, Melander O, Mannucci PM, Ardissino D, Siscovick D, Elosua R, Stefansson K, O'Donnell CJ, Salomaa V, Rader DJ, Peltonen L, Schwartz SM, Altshuler D, Kathiresan S. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–580. - PMC - PubMed
    1. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–2122. - PubMed
    1. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJV, Mundl H, Nicholls SJ, Shah PK, Tardif JC, Wright RS. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–2099. - PubMed
    1. Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, Gibson CM, Granger C, Menon V, Montalescot G, Rader D, Tall AR, McErlean E, Wolski K, Ruotolo G, Vangerow B, Weerakkody G, Goodman SG, Conde D, McGuire DK, Nicolau JC, Leiva-Pons JL, Pesant Y, Li W, Kandath D, Kouz S, Tahirkheli N, Mason D, Nissen SE. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376:1933–1942. - PubMed

MeSH terms