Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 1:152:241-250.
doi: 10.1016/j.watres.2018.12.060. Epub 2019 Jan 11.

Autonomous online measurement of β-D-glucuronidase activity in surface water: is it suitable for rapid E. coli monitoring?

Affiliations

Autonomous online measurement of β-D-glucuronidase activity in surface water: is it suitable for rapid E. coli monitoring?

Jean-Baptiste Burnet et al. Water Res. .

Abstract

Microbiological water quality is traditionally assessed using culture-based enumeration of faecal indicator bacteria such as Escherichia coli. Despite their relative ease of use, these methods require a minimal 18-24 h-incubation step before the results are obtained. This study aimed to assess the suitability of an autonomous online fluorescence-based technology measuring β-glucuronidase (GLUC) activity for rapid near-real time monitoring of E. coli in water. The analytical precision was determined and compared to an automated microbial detection system, two culture-based assays and quantitative real-time PCR (qPCR). Using replicate measurements of grab samples containing E. coli concentrations between 50 and 2330 CFU.100 mL-1, the autonomous GLUC activity measurement technology displayed an average coefficient of variation (CV) of less than 5% that was 4-8-fold lower than other methods tested. Comparable precision was observed during online in situ monitoring of GLUC activity at a drinking water intake using three independent instruments. GLUC activity measurements were not affected by sewage or sediments at concentrations likely to be encountered during long-term monitoring. Furthermore, significant (p < 0.05) correlations were obtained between GLUC activity and the other assays including defined substrate technology (r = 0.77), membrane filtration (r = 0.73), qPCR (r = 0.55) and the automated microbial detection system (r = 0.50). This study is the first to thoroughly compare the analytical performance of rapid automated detection technologies to established culture and molecular-based methods. Results show that further research is required to correlate GLUC activity to the presence of viable E. coli as measured in terms of CFU.100 mL-1. This would allow the use of autonomous online GLUC activity measurements for rapid E. coli monitoring in water supplies used for drinking water production and recreation.

Keywords: Enzymatic assays; Escherichia coli; Online monitoring; Repeatability; Robustness; β-D-glucuronidase.

PubMed Disclaimer

Publication types

LinkOut - more resources