Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr:56:193-201.
doi: 10.1016/j.copbio.2018.12.005. Epub 2019 Jan 9.

Reductive catalytic fractionation: state of the art of the lignin-first biorefinery

Affiliations
Review

Reductive catalytic fractionation: state of the art of the lignin-first biorefinery

Tom Renders et al. Curr Opin Biotechnol. 2019 Apr.

Abstract

Reductive catalytic fractionation (RCF) of lignocellulose is an emerging biorefinery scheme that combines biomass fractionation with lignin depolymerisation. Central to this scheme is the integration of heterogeneous catalysis, which overcomes the tendency of lignin to repolymerise. Ultimately, this leads to a low-Mw lignin oil comprising a handful of lignin-derived monophenolics in close-to-theoretical yield, as well as a carbohydrate pulp. Both product streams are considered to be valuable resources for the bio-based chemical industry. This Opinion article sheds light on recently achieved milestones and consequent research opportunities. More specifically, mechanistic studies have established a general understanding of the elementary RCF steps, which include (i) lignin extraction, (ii) solvolytic and catalytic depolymerisation and (iii) stabilisation. This insight forms the foundation for recently developed flow-through RCF. Compared to traditional batch, flow-through RCF has the advantage of (i) separating the solvolytic steps from the catalytic steps and (ii) being a semi-continuous process; both of which are beneficial for research purposes and for industrial operation. Although RCF has originally been developed for 'virgin' biomass, researchers have just begun to explore alternative feedstocks. Low-value biomass sources such as agricultural residues, waste wood and bark, are cheap and abundant but are also often more complex. On the other side of the feedstock spectrum are high-value bio-engineered crops, specifically tailored for biorefinery purposes. Advantageous for RCF are feedstocks designed to (i) increase the total monomer yield, (ii) extract lignin more easily, and/or (iii) yield unconventional, high-value products (e.g. alkylated catechols derived from C-lignin). Taking a look at the bigger picture, this Opinion article highlights the multidisciplinary nature of RCF. Collaborative efforts involving chemists, reactor engineers, bioengineers and biologists working closer together are, therefore, strongly encouraged.

PubMed Disclaimer

Publication types

LinkOut - more resources