Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 6;21(6):3227-3241.
doi: 10.1039/c8cp05412f.

Density functional theory (DFT) calculations of VI/V reduction potentials of uranyl coordination complexes in non-aqueous solutions

Affiliations

Density functional theory (DFT) calculations of VI/V reduction potentials of uranyl coordination complexes in non-aqueous solutions

Krishnamoorthy Arumugam et al. Phys Chem Chem Phys. .

Abstract

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. In this study, to determine the reduction potentials of uranyl complexes in non-aqueous solutions, a hybrid density functional theory (DFT) approach was used in which two different DFT functionals, B3LYP and M06, were applied. Bulk solvent effects were invoked through the conductor-like polarizable continuum model. The solute cavities were described with the united-atom Kohn-Sham (UAKS) cavity definition. Inside the cavity the dielectric constant matches the value of a vacuum and outside the cavity the dielectric constant value is the same as that of the solvent of interest, for example, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dichloromethane (DCM), acetonitrile and pyridine. With the help of the Nernst equation the calculated reduction potentials with respect to the ferrocene (Fc) reference electrode are converted into reduction free energies (RFEs). Uranyl complexes of organic ligands which range from mono- to hexa-dentate coordination modes were investigated in non-aqueous solutions of DMSO, DMF, DCM, acetonitrile and pyridine solutions. The effect of the spin-orbit correction and the reference electrode correction on the RFEs and various methods such as the direct method and the isodesmic reaction model were explored. Overall, our computational determination of RFEs of uranyl complexes in various non-aqueous solutions demonstrates that the RFEs can be obtained within ∼0.2 eV of experimental values.

PubMed Disclaimer

LinkOut - more resources