Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct;100(10):2113-2118.
doi: 10.1094/PDIS-03-16-0403-RE. Epub 2016 Aug 2.

Hormetic Effects of Trifloxystrobin on Aggressiveness of Sclerotinia sclerotiorum

Affiliations

Hormetic Effects of Trifloxystrobin on Aggressiveness of Sclerotinia sclerotiorum

Ya-Li Di et al. Plant Dis. 2016 Oct.

Abstract

Sclerotinia sclerotiorum is a devastating ascomycete plant pathogen with an extremely wide host range. Fungicides are still the mainstay for control of this pathogen, and stimulations to mycelial growth and aggressiveness by subtoxic doses of fungicides carbendazim and dimethachlon have been reported. The present study assessed hormetic effects of the quinone outside inhibitor (QoI) fungicide trifloxystrobin on aggressiveness of S. sclerotiorum. Trifloxystrobin at 0.0001, 0.0005, and 0.001 μg/ml exerted significant stimulatory effects on aggressiveness to potted rapeseed plants, and the highest percent stimulation were 20.5 and 24.2% for isolates HB15 and SX11, respectively. At 18 h postinoculation (HPI), initial necrotic lesions were visible to the naked eye on leaves treated with trifloxystrobin, whereas no obvious disease symptoms were discerned for the nontreated control. At 24, 36, and 48 HPI, aggressiveness stimulation was more obvious than at 18 HPI. Scanning electron microscopic observations demonstrated that no mycelia were detected on the nontreated leaves at 4 HPI; by contrast, mycelia were observed on leaves treated with trifloxystrobin at 0.0001 μg/ml. At 8 and 12 HPI, there were more mycelia and infecting hyphae on the treated leaves than on the nontreated control. These results indicated that fungal stimulation had occurred in the first 4 and 8 HPI, suggesting that direct stimulation was likely to be the underlying mechanism for hormetic actions of trifloxystrobin. Pretreatment with trifloxystrobin did not significantly affect subsequent mycelial growth on PDA or aggressiveness to detached rapeseed leaves in the absence of trifloxystrobin. However, in the presence of trifloxystrobin, mycelial growth and aggressiveness were significantly (P < 0.05) greater for the pretreatment with trifloxystrobin at 0.003 and 0.03 μg/ml compared with the nonpretreatment control, indicating that a prior exposure to the fungicide may undermine its subsequent effectiveness. These studies will raise our awareness of fungicide hormesis and have important implications for judicious application of fungicides.

PubMed Disclaimer

LinkOut - more resources