Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes
- PMID: 30683693
- PMCID: PMC6433076
- DOI: 10.1074/jbc.RA118.007260
Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes
Abstract
Photoreceptors enable the integration of ambient light stimuli to trigger lifestyle adaptations via modulation of central metabolite levels involved in diverse regulatory processes. Red light-sensing bacteriophytochromes are attractive targets for the development of innovative optogenetic tools because of their natural modularity of coupling with diverse functionalities and the natural availability of the light-absorbing biliverdin chromophore in animal tissues. However, a rational design of such tools is complicated by the poor understanding of molecular mechanisms of light signal transduction over long distances-from the site of photon absorption to the active site of downstream enzymatic effectors. Here we show how swapping structural elements between two bacteriophytochrome homologs provides additional insight into light signal integration and effector regulation, involving a fine-tuned interplay of important structural elements of the sensor, as well as the sensor-effector linker. Facilitated by the availability of structural information of inhibited and activated full-length structures of one of the two homologs (Idiomarina species A28L phytochrome-activated diguanylyl cyclase (IsPadC)) and characteristic differences in photoresponses of the two homologs, we identify an important cross-talk between the N-terminal segment, containing the covalent attachment site of the chromophore, and the PHY-tongue region. Moreover, we highlight how these elements influence the dynamic range of photoactivation and how activation can be improved to light/dark ratios of ∼800-fold by reducing basal dark-state activities at the same time as increasing conversion in the light state. This will enable future optimization of optogenetic tools aiming at a direct allosteric regulation of enzymatic effectors.
Keywords: GGDEF; bilin; cyclic di-GMP (c-di-GMP); diguanylate cyclase; photobiology; photoreceptor; phytochrome; protein engineering; signal transduction; ultraviolet-visible spectroscopy (UV-visible spectroscopy).
© 2019 Gourinchas et al.
Conflict of interest statement
The authors declare that they have no conflicts of interest with the contents of this article
Figures





Similar articles
-
Distinct chromophore-protein environments enable asymmetric activation of a bacteriophytochrome-activated diguanylate cyclase.J Biol Chem. 2020 Jan 10;295(2):539-551. doi: 10.1074/jbc.RA119.011915. Epub 2019 Dec 4. J Biol Chem. 2020. PMID: 31801828 Free PMC article.
-
Long-range allosteric signaling in red light-regulated diguanylyl cyclases.Sci Adv. 2017 Mar 3;3(3):e1602498. doi: 10.1126/sciadv.1602498. eCollection 2017 Mar. Sci Adv. 2017. PMID: 28275738 Free PMC article.
-
Dynamics-driven allosteric stimulation of diguanylate cyclase activity in a red light-regulated phytochrome.J Biol Chem. 2024 May;300(5):107217. doi: 10.1016/j.jbc.2024.107217. Epub 2024 Mar 24. J Biol Chem. 2024. PMID: 38522512 Free PMC article.
-
Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology.Curr Opin Struct Biol. 2019 Aug;57:72-83. doi: 10.1016/j.sbi.2019.02.005. Epub 2019 Mar 14. Curr Opin Struct Biol. 2019. PMID: 30878713 Free PMC article. Review.
-
Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum.Curr Opin Struct Biol. 2019 Aug;57:39-46. doi: 10.1016/j.sbi.2019.01.018. Epub 2019 Mar 2. Curr Opin Struct Biol. 2019. PMID: 30831380 Review.
Cited by
-
The PHY Domain Dimer Interface of Bacteriophytochromes Mediates Cross-talk between Photosensory Modules and Output Domains.J Mol Biol. 2021 Jul 23;433(15):167092. doi: 10.1016/j.jmb.2021.167092. Epub 2021 Jun 9. J Mol Biol. 2021. PMID: 34116122 Free PMC article.
-
A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases.Nat Commun. 2024 Nov 27;15(1):10310. doi: 10.1038/s41467-024-54781-2. Nat Commun. 2024. PMID: 39604418 Free PMC article.
-
Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.Front Bioeng Biotechnol. 2022 Oct 14;10:1029403. doi: 10.3389/fbioe.2022.1029403. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36312534 Free PMC article. Review.
-
Nonlinear optical properties of photosensory core modules of monomeric and dimeric bacterial phytochromes.Protein Sci. 2025 May;34(5):e70118. doi: 10.1002/pro.70118. Protein Sci. 2025. PMID: 40248855 Free PMC article.
-
Characterisation of sequence-structure-function space in sensor-effector integrators of phytochrome-regulated diguanylate cyclases.Photochem Photobiol Sci. 2022 Oct;21(10):1761-1779. doi: 10.1007/s43630-022-00255-7. Epub 2022 Jul 5. Photochem Photobiol Sci. 2022. PMID: 35788917 Free PMC article.
References
-
- Heintzen C. (2012) Plant and fungal photopigments. Wiley Interdiscip. Rev. Membr. Transp. Signal. 1, 411–432 10.1002/wmts.36 - DOI
-
- Duanmu D., Bachy C., Sudek S., Wong C.-H., Jiménez V., Rockwell N. C., Martin S. S., Ngan C. Y., Reistetter E. N., van Baren M. J., Price D. C., Wei C. L., Reyes-Prieto A., Lagarias J. C., and Worden A. Z. (2014) Marine algae and land plants share conserved phytochrome signaling systems. Proc. Natl. Acad. Sci. U.S.A. 111, 15827–15832 10.1073/pnas.1416751111 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources