Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May:162:29-38.
doi: 10.1016/j.beproc.2019.01.003. Epub 2019 Jan 23.

Progression and stop organization reveals conservation of movement organization during dark exploration across rats and mice

Affiliations

Progression and stop organization reveals conservation of movement organization during dark exploration across rats and mice

T N Donaldson et al. Behav Processes. 2019 May.

Abstract

Spatial orientation is a ubiquitous feature of animal behavior. Environmental and self-movement cues are sources of information used to maintain spatial orientation. The literature has typically focused on differences between mice and rats using environmental cues to guide movement. The current study uses the organization of exploratory behavior under dark conditions to investigate species differences in self-movement cue processing. Mouse and rat exploratory behavior was recorded under dark conditions on a circular table without walls. The resulting movements were segmented in progressions (movement ≥ 3 cm/s) and stops (movement < 3 cm/s). Mice exhibited longer travel distances, faster progression peak speeds, and weaker tendency to scale progression peak speeds to Euclidean distances relative to rats. In contrast, similar levels of performance were observed on measures (progression path circuity, change in heading, stability of stopping behavior) sensitive to vestibular pathology. These results are consistent with species differences in a variety of performance variables; however, self-movement cue based spatial orientation did not differentiate between mice and rats. This work establishes a translational foundation for future work investigating the neurobiology of self-movement cue processing using species-unique neuroscience techniques.

Keywords: Dead reckoning; Home base establishment; Kinematic analysis; Path integration; Self-movement cues; Vestibular.

PubMed Disclaimer

LinkOut - more resources