Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jan 9:9:3057.
doi: 10.3389/fimmu.2018.03057. eCollection 2018.

Clinical Relevance of Galectin-1 and Galectin-3 in Rheumatoid Arthritis Patients: Differential Regulation and Correlation With Disease Activity

Affiliations
Review

Clinical Relevance of Galectin-1 and Galectin-3 in Rheumatoid Arthritis Patients: Differential Regulation and Correlation With Disease Activity

Santiago P Mendez-Huergo et al. Front Immunol. .

Abstract

Galectins, a family of animal lectins, play central roles in immune system regulation, shaping both innate and adaptive responses in physiological and pathological processes. These include rheumatoid arthritis (RA), a chronic multifactorial autoimmune disease characterized by inflammatory responses that affects both articular and extra-articular tissues. Galectins have been reported to play central roles in RA and its experimental animal models. In this perspective article we present new data highlighting the regulated expression of galectin-1 (Gal-1) and galectin-3 (Gal-3) in sera from RA patients under disease-modifying anti-rheumatic drugs (DMARDs) and/or corticoid treatment in the context of a more comprehensive discussion that summarizes the roles of galectins in joint inflammation. We found that Gal-1 levels markedly increase in sera from RA patients and positively correlate with erythrocyte sedimentation rate (ERS) and disease activity score 28 (DAS-28) parameters. On the other hand, Gal-3 is downregulated in RA patients, but positively correlates with health assessment questionnaire parameter (HAQ). Finally, by generating receiver-operator characteristic (ROC) curves, we found that Gal-1 and Gal-3 serum levels constitute good parameters to discriminate patients with RA from healthy individuals. Our findings uncover a differential regulation of Gal-1 and Gal-3 which might contribute to the anti-inflammatory effects elicited by DMARDs and corticoid treatment in RA patients.

Keywords: autoimmune disease; galectin-1; galectin-3; inflammation; rheumatoid arthritis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Role of galectins in inflamed synovial tissue. Galectins are expressed by a number of inflammatory cells (both innate and adaptive immune cells), endothelial cells, stromal cells, and synovial fibroblasts. These glycan-binding proteins influence a variety of cellular programs that control amplification and resolution of inflammatory responses. Galectins can behave as pro- or anti-inflammatory mediators by modulating the physiology of immune cells, including monocytes, macrophages, synovial fibroblasts, Th1, Th2, and Th17 cells, regulatory T (Treg) cells, B cells, neutrophils and mast cells. By positively or negatively regulating inflammation, galectins may directly or indirectly influence the clinical course of RA. While Gal-1 enhances a Th2-Treg response profile, polarizes macrophages toward an M2 phenotype and induces apoptosis of Th1 and Th17 cells, Gal-3 activates fibroblasts and induces secretion of pro-inflammatory cytokines. Circulating autoantibodies reduce effective Gal-1 concentrations in synovial fluid of patients with RA. On the other hand, Gal-9 controls CD4+ T cell functions through binding to TIM-3+ cells. Moreover, Gal-8 has pro-apoptotic and anti-inflammatory activity in the inflamed joint; however a soluble form of CD44 reduces availability of this tandem-repeat galectin by forming complexes with fibrinogen. Gal, Galectin; TNF, Tumor necrosis factor; IL, Interleukin; Th, T helper cell; Treg, regulatory T cells; M1, pro-inflammatory macrophage; M2, anti-inflammatory macrophage.
Figure 2
Figure 2
Serum Gal-1 and Gal-3 expression levels discriminate RA patients from healthy individuals. (A-C). Determination of serum Gal-1 levels (ELISA) in controls and RA patients from cohort 1 (A), cohort 2 (B) and pooled data (C). (D). Gal-1 serum levels from all patients (C) classified by functional status. (E-I). Correlation analysis of Gal-1 serum levels of all patients with HAQ (E), VAS (F), ESR (G), DAS-28 (H) and RA duration (I). (J). Determination of serum Gal-3 levels (ELISA) in controls and RA patients from cohort 2. (K). Gal-3 serum levels of RA patients from cohort 2 (J) classified by functional status. (L-M). Correlation analysis of Gal-3 serum levels of RA patients from cohort 2 with HAQ (L) and age (M). (N). ROC curve analysis to assess Gal-1 (blue) and Gal-3 (red) capacity to discriminate between RA patients and healthy individuals. *p < 0.05, **p < 0.01, ***p < 0.001. ****p < 0.0001. All variables analyzed were tested for Gaussian distribution with D'Agostino and Pearson omnibus normality test. For comparisons between two groups, unpaired t test with Welch's correction or Mann-Whitney tests were applied as appropriate. For comparisons between more than two groups, Kruskal-Wallis test was applied. For correlation analysis, Pearson or Spearman correlation tests were applied as appropriate. To determine the capability of Gal-1 and Gal-3 serum level measurements to discriminate between RA patients and controls, ROC curves were generated.

Similar articles

Cited by

References

    1. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity (2017) 46:183–96. 10.1016/j.immuni.2017.02.006 - DOI - PMC - PubMed
    1. Toscano MA, Martinez Allo VC, Cutine AM, Rabinovich GA, Marino K V. Untangling galectin-driven regulatory circuits in autoimmune inflammation. Trends Mol Med. (2018) 24:348–63. 10.1016/j.molmed.2018.02.008 - DOI - PubMed
    1. Sundblad V, Morosi LG, Geffner JR, Rabinovich GA. Galectin-1: A jack-of-all-trades in the resolution of acute and chronic inflammation. J Immunol. (2017) 199:3721–30. 10.4049/jimmunol.1701172 - DOI - PubMed
    1. Cerliani JP, Blidner AG, Toscano MA, Croci DO, Rabinovich GA. Translating the ≪Sugar Code≫ into immune and vascular signaling programs. Trends Biochem Sci. (2017) 42:255–73. 10.1016/j.tibs.2016.11.003 - DOI - PubMed
    1. Cedeno-Laurent F, Dimitroff CJ. Galectin-1 research in T cell immunity: past, present and future. Clin Immunol. (2012) 142:107–16. 10.1016/j.clim.2011.09.011 - DOI - PMC - PubMed

Publication types