Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 22;32(5):452-459.
doi: 10.1093/ajh/hpz016.

Dapagliflozin Attenuates Cardiac Remodeling in Mice Model of Cardiac Pressure Overload

Affiliations

Dapagliflozin Attenuates Cardiac Remodeling in Mice Model of Cardiac Pressure Overload

Lin Shi et al. Am J Hypertens. .

Abstract

Background: Dapagliflozin (DAPA) is an inhibitor of sodium-glucose cotransporter 2 prescribed for type 2 diabetes mellitus. DAPA plays a protective role against cardiovascular diseases. Nevertheless, the effect and mechanism of DAPA on pressure-overload-induced cardiac remodeling has not been determined.

Methods: We used a transverse aortic constriction (TAC) induced cardiac remodeling model to evaluate the effect of DAPA. Twenty-four C57BL/6J mice were divided into 3 groups: Sham, TAC, and TAC + DAPA groups (n = 8, each). DAPA was administered by gavage (1.0 mg/kg/day) for 4 weeks in the TAC + DAPA group, and then the myocardial hypertrophy, cardiac systolic function, myocardial fibrosis, and cardiomyocyte apoptosis were evaluated.

Results: Mice in TAC group showed increased heart weight/body weight, left ventricular (LV) diameter, LV posterior wall thickness, and decreased LV ejection fraction and LV fractional shortening. The collagen volume fraction and perivascular collagen area/luminal area ratio were significantly greater in the TAC group; the TUNEL-positive cell number and PARP level were also increased. We found that DAPA treatment reduced myocardial hypertrophy, myocardial interstitial and perivascular fibrosis, and cardiomyocyte apoptosis. Furthermore, DAPA administration inhibited phosphorylation of P38 and JNK in TAC group. In addition, the inhibited phosphorylation of FoxO1 in the TAC mice was upregulated by DAPA administration.

Conclusion: DAPA administration had a cardioprotective effect by improving cardiac systolic function, inhibiting myocardial fibrosis and cardiomyocyte apoptosis in a TAC mouse model, indicating that it could serve as a new therapy to prevent pathological cardiac remodeling in nondiabetics.

Keywords: FoxO1; MAPKs; TAC; apoptosis; cardiac remodeling; dapagliflozin; hypertrophy; myocardial fibrosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms