Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr;63(4):448-454.
doi: 10.1111/aas.13335. Epub 2019 Jan 28.

Predictive performance of a new pharmacokinetic model for propofol in underweight patients during target-controlled infusion

Affiliations

Predictive performance of a new pharmacokinetic model for propofol in underweight patients during target-controlled infusion

Jung-Min Yi et al. Acta Anaesthesiol Scand. 2019 Apr.

Abstract

Background: In a previous study, the modified Marsh and Schnider models respectively showed negatively- and positively-biased predictions in underweight patients. To overcome this drawback, we developed a new pharmacokinetic propofol model-the Choi model-for use in underweight patients. In the present study, we evaluated the predictive performance of the Choi model.

Methods: Twenty underweight patients undergoing elective surgery received propofol via TCI using the Choi model. The target effect-site concentrations (Ces) of propofol were 2.5, 3, 3.5, 4, 4.5, and 2 μg/mL. Arterial blood samples were obtained at least 10 minutes after achieving pseudo-steady-state. Predicted propofol concentrations with the modified Marsh, Schnider, and Eleveld pharmacokinetic models were obtained by simulation (Asan pump, version 2.1.3; Bionet Co. Ltd., Seoul, Korea). The predictive performance of each model was assessed by calculation of four parameters: inaccuracy, divergence, bias, and wobble.

Results: A total of 119 plasma samples were used to determine the predictive performance of the Choi model. Our evaluation showed that the pooled median (95% CI) bias and inaccuracy were 4.0 (-4.2 to 12.2) and 23.9 (17.6-30.3), respectively. The pooled biases and inaccuracies of the modified Marsh, Schnider, and Eleveld models were clinically acceptable. However, the modified Marsh and Eleveld models consistently produced negatively biased predictions in underweight patients. In particular, the Schnider model showed greater inaccuracy at a target Ce ≥ 3 µg/mL.

Conclusion: The new propofol pharmacokinetic model (the Choi model) developed for underweight patient showed adequate performance for clinical use.

Keywords: clinical pharmacology; pharmacokinetics; propofol.

PubMed Disclaimer

Publication types

MeSH terms