Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul;99(7):976-981.
doi: 10.1094/PDIS-12-14-1283-RE. Epub 2015 May 15.

Detection of Grapevine Fungal Trunk Pathogens on Pruning Shears and Evaluation of Their Potential for Spread of Infection

Affiliations

Detection of Grapevine Fungal Trunk Pathogens on Pruning Shears and Evaluation of Their Potential for Spread of Infection

C Agustí-Brisach et al. Plant Dis. 2015 Jul.

Abstract

Four vineyards visibly affected by trunk diseases were surveyed at pruning time in 2012 and 2013 in Spain, to determine whether pruning tools are capable of spreading grapevine trunk diseases from vine to vine. In each vineyard, pruning shears were regularly rinsed with sterile water, collecting liquid samples for analysis. Molecular detection of grapevine fungal trunk pathogens (GFTPs) was performed by nested polymerase chain reaction using specific primers to detect Botryosphaeriaceae spp. Eutypa lata, Cadophora luteo-olivacea, Phaeoacremonium spp., and Phaeomoniella chlamydospora. All of these GFTPs, with the exception of E. lata, were detected in samples from the four vineyards, C. luteo-olivacea and Phaeoacremonium spp. being the most prevalent. Co-occurrence of two, three, or four different GFTPs from the same sample were found, the simultaneous detection of C. luteo-olivacea and Phaeoacremonium spp. being the most prevalent. In addition, fungal isolation from liquid samples in semiselective culture medium for C. luteo-olivacea, Phaeoacremonium spp., and P. chlamydospora was also performed but only C. luteo-olivacea was recovered from samples collected in three of four vineyards evaluated. Pruning shears artificially infested with suspensions of conidia or mycelial fragments of C. luteo-olivacea, Diplodia seriata, E. lata, Phaeoacremonium aleophilum, and Phaeomoniella chlamydospora were used to prune 1-year-old grapevine cuttings of '110 Richter' rootstock. Successful fungal reisolation from the cuttings 4 months after pruning confirmed that infested pruning shears were able to infect them through pruning wounds. These results improve knowledge about the epidemiology of GFTPs and demonstrate the potential of inoculum present on pruning shears to infect grapevines.

PubMed Disclaimer

LinkOut - more resources