Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 29;9(1):13.
doi: 10.1186/s13568-019-0740-6.

Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1

Affiliations

Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1

Yueqi Zhang et al. AMB Express. .

Abstract

Wheat bran is an effective raw material for preparation xylooligosaccharides; however, current research mainly focuses on alkali extraction and enzymatic hydrolysis methods. Since ester bonds are destroyed during the alkali extraction process, xylanase and arabinofuranosidase are mainly used to hydrolyze xylooligosaccharides. However, alkali extraction costs are very high, and the method also causes pollution. Therefore, this study focuses on elucidating a method to efficiently and directly degrade destarched wheat bran. First, an acidic acetyl xylan esterase (AXE) containing a carbohydrate-binding module-1 (CBM1) domain was cloned from Talaromyces leycettanus JCM12802 and successfully expressed in Pichia pastoris. Characterization showed that the full-length acetyl xylan esterase AXE + CBM1 was similar toe uncovered AXE with an optimum temperature and pH of 55 °C and 6.5, respectively. Testing the acetyl xylan esterase and xylanase derived from Neocallimastix patriciarum in a starch-free wheat bran cooperative experiment revealed that AXE + CBM1 and AXE produced 29% and 16% reducing sugars respectively, compared to when only NPXYN11 was used. In addition, introduced the CBM1 domain into NPXYN11, and the results indicated that the CBM1 domain showed little effect on NPXYN11 properties. Finally, the systematically synergistic effects between acetyl xylan esterase and xylanase with/without the CBM1 domain demonstrated that the combined ratio of AXE + CBM1 coming in first and NPXYN11 + CBM1 s increased reducing sugars by almost 35% with AXE and NPXYN11. Furthermore, each component's proportion remained the same with respect to xylooligosaccharides, with the largest proportion (86%) containing of 49% xylobiose and 37% xylotriose.

Keywords: Acetyl xylan esterase; CBM1 domain; Synergistic effect; Xylanase; Xylooligosaccharides.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
SDS-PAGE analysis of the purified protein NPXYN11, NPXYN11 + CBM1, AXE and AXE + CBM1. Lane M, the standard protein molecular weight markers; lane 1, the purified AXE + CBM1; lane 2, the purified AXE; lane 3, the purified NPXYN11; lane 4, the purified NPXYN11 + CBM1
Fig. 2
Fig. 2
Characterization of the purified AXE and AXE + CBM1. a Effect of temperature on the AXE and AXE + CBM1 activities. b Effect of pH on the AXE and AXE + CBM1 activities. c Stability of pH on the AXE and AXE + CBM1 activities. d Thermostability assay on the AXE and AXE + CBM1 activities. Each value in the panel represents the mean ± SD (n = 3)
Fig. 3
Fig. 3
Characterization of the purified NPXYN11 and NPXYN11 + CBM1. a Effect of temperature on the NPXYN11 and NPXYN11 + CBM1 activities. b Effect of pH on the NPXYN11 and NPXYN11 + CBM1 activities. c Stability of pH on the NPXYN11 and NPXYN11 + CBM1 activities. d Thermostability assay on the NPXYN11 and NPXYN11 + CBM1 activities. Each value in the panel represents the mean ± SD (n = 3)
Fig. 4
Fig. 4
Determined addition of acetyl xylan esterase and xylanase in starch-free wheat bran experiment as reducing sugar. a The content of reducing sugar produced by xylanase NPXYN11 in different units of activity to the starch-free wheat bran. b Reducing sugar content on the basic of 200 U xylanase NPXYN11 and different amount acetyl xylan esterase AXE severally

References

    1. Antoine C, Peyron S, Lullien-Pellerin V, Abecassis J, Rouau X. Wheat bran tissue fractionation using biochemical markers. J Cereal Sci. 2004;39(3):387–393. doi: 10.1016/j.jcs.2004.02.001. - DOI
    1. Bastawde KB. Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol. 1992;8(4):353–368. doi: 10.1007/BF01198746. - DOI - PubMed
    1. Biely P, Mislovicova D, Toman R. Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Anal Biochem. 1985;144(1):142–146. doi: 10.1016/0003-2697(85)90095-8. - DOI - PubMed
    1. Biely P, Vrsanska M, Tenkanen M, Kluepfel D. Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol. 1997;57(1–3):151–166. doi: 10.1016/S0168-1656(97)00096-5. - DOI - PubMed
    1. Bu Y, Cui Y, Peng Y, Hu M, Tian Y, Tao Y, Wu B. Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design. Appl Microbiol Biotechnol. 2018;102(8):3675–3685. doi: 10.1007/s00253-018-8872-1. - DOI - PubMed

LinkOut - more resources