Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2019 Jan 29;17(1):e3000118.
doi: 10.1371/journal.pbio.3000118. eCollection 2019 Jan.

Dominance reversals and the maintenance of genetic variation for fitness

Affiliations
Comment

Dominance reversals and the maintenance of genetic variation for fitness

Tim Connallon et al. PLoS Biol. .

Abstract

Antagonistic selection between different fitness components (e.g., survival versus fertility) or different types of individuals in a population (e.g., females versus males) can potentially maintain genetic diversity and thereby account for the high levels of fitness variation observed in natural populations. However, the degree to which antagonistic selection can maintain genetic variation critically depends on the dominance relations between antagonistically selected alleles in diploid individuals. Conditions for stable polymorphism of antagonistically selected alleles are narrow, particularly when selection is weak, unless the alleles exhibit "dominance reversals"-in which each allele is partially or completely dominant in selective contexts in which it is favored and recessive in contexts in which it is harmful. Although theory predicts that dominance reversals should emerge under biologically plausible conditions, evidence for dominance reversals is sparse. In this primer, we review theoretical arguments and data supporting a role for dominance reversals in the maintenance of genetic variation. We then highlight an illuminating new study by Grieshop and Arnqvist, which reports a genome-wide signal of dominance reversals between male and female fitness in seed beetles.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Dominance reversals promote balancing selection at an SA gene.
Left panel: strong selection. Right panel: weak selection. The regions between the solid black curves show the conditions for balancing selection under parallel dominance (hf = 1 − hm). The regions between the dashed lines show the conditions for balancing selection under a partial dominance reversal, where hf = hm = ¼. The grey shaded regions show the expanded parameter space for balancing selection caused by the dominance reversal. This expanded parameter space due to dominance reversal is particularly pronounced when selection is modest to weak (right panel). Stronger dominance reversals (hf and hm < ¼) further expand the conditions for balancing selection. Theoretical curves are based on Eq 1, and the figure is based on Figs 1 and 3 of Kidwell and colleagues [9]. Af, female-beneficial allele; Am, male-beneficial allele; hf, dominance coefficient of the Am allele in females; hm, dominance coefficient of the Af allele in males; SA, sexually antagonistic; sf, the cost to females of being homozygous for the Am allele; sm, the cost to males of being homozygous for the Af allele.
Fig 2
Fig 2. Dominance emerges from concave fitness surfaces.
(A) Wright’s theory of dominance (based on Fig 7 from Wright [41] and Fig 1 from Otto and Bourguet [38]). A concave relation between gene activity and fitness causes deleterious mutations to be partially recessive to beneficial ones. In the example, a beneficial allele, A, and deleterious allele, a, have additive effects on gene activity (i.e., alleles alter gene transcription or function by amount Δx). The diminishing-return relation between fitness and gene activity results in partial recessivity of a with respect to fitness (h < ½). (B) Dominance reversal at an SA gene (based on Fig 1 from Gillespie and Langley [44] and Fig 2 from Fry [27]). The fitness surfaces for females and males (in blue and red, respectively) are each concave but have different optima. The SA alleles have additive effects on gene activity (i.e., by Δx); the concave mapping of fitness on gene activity causes the deleterious variant for each sex to be partially recessive (hf and hm < ½), so that Af is partially recessive in males and Am is partially recessive in females. Am, male-beneficial allele; hf, dominance coefficient of the Am allele in females; hm, dominance coefficient of the Af allele in males; SA, sexually antagonistic.
Fig 3
Fig 3. Axes of SA and sexually concordant fitness variation.
The sexually concordant axis of genetic variation is marked in blue. The SA axis of genetic variation is marked in red. Circles show fitness estimates for a set of hypothetical experimental genotypes. SA, sexually antagonistic.

Comment on

References

    1. Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunderland: Sinauer Associates; 1998.
    1. Johnson T, Barton N. Theoretical models of selection and mutation on quantitative traits. Phil Trans Roy Soc Lond B. 2005;360: 1411–1425. - PMC - PubMed
    1. Walsh B, Blows MW. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Ann Rev Ecol Evol Syst. 2009;40: 41–59.
    1. Dobzhansky T. A review of some fundamental concepts and problems of population genetics. Cold Spring Harbor Symposia Quant Biol. 1955;20: 1–15. - PubMed
    1. Lewontin RC. The genetic basis of evolutionary change. New York: Columbia University Press; 1974.

Publication types