Ferroelectric Analog Synaptic Transistors
- PMID: 30698976
- DOI: 10.1021/acs.nanolett.9b00180
Ferroelectric Analog Synaptic Transistors
Abstract
Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices.
Keywords: Ferroelectric materials; analog conductance modulations; artificial synapses; multilevel data storage; neuromorphic computing; thin-film transistors.
Similar articles
-
Analog Synaptic Transistor with Al-Doped HfO2 Ferroelectric Thin Film.ACS Appl Mater Interfaces. 2021 Nov 10;13(44):52743-52753. doi: 10.1021/acsami.1c12735. Epub 2021 Nov 1. ACS Appl Mater Interfaces. 2021. PMID: 34723461
-
Junctionless Poly-GeSn Ferroelectric Thin-Film Transistors with Improved Reliability by Interface Engineering for Neuromorphic Computing.ACS Appl Mater Interfaces. 2020 Jan 8;12(1):1014-1023. doi: 10.1021/acsami.9b16231. Epub 2019 Dec 23. ACS Appl Mater Interfaces. 2020. PMID: 31814384
-
Black Phosphorus/Ferroelectric P(VDF-TrFE) Field-Effect Transistors with High Mobility for Energy-Efficient Artificial Synapse in High-Accuracy Neuromorphic Computing.Nano Lett. 2023 Jul 26;23(14):6752-6759. doi: 10.1021/acs.nanolett.3c01687. Epub 2023 Jun 7. Nano Lett. 2023. PMID: 37283505
-
Ferroelectric Transistors for Memory and Neuromorphic Device Applications.Adv Mater. 2023 Jun;35(22):e2206864. doi: 10.1002/adma.202206864. Epub 2023 Apr 4. Adv Mater. 2023. PMID: 36484488 Review.
-
Multi-Level Neuromorphic Devices Built on Emerging Ferroic Materials: A Review.Front Neurosci. 2021 Apr 28;15:661667. doi: 10.3389/fnins.2021.661667. eCollection 2021. Front Neurosci. 2021. PMID: 33994935 Free PMC article. Review.
Cited by
-
Organic Phase-Change Memory Transistor Based on an Organic Semiconductor with Reversible Molecular Conformation Transition.Adv Sci (Weinh). 2023 Feb;10(4):e2205694. doi: 10.1002/advs.202205694. Epub 2022 Dec 3. Adv Sci (Weinh). 2023. PMID: 36461698 Free PMC article.
-
CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks.Sci Adv. 2022 Apr 8;8(14):eabm8537. doi: 10.1126/sciadv.abm8537. Epub 2022 Apr 8. Sci Adv. 2022. PMID: 35394830 Free PMC article.
-
A flexible artificial intrinsic-synaptic tactile sensory organ.Nat Commun. 2020 Jun 2;11(1):2753. doi: 10.1038/s41467-020-16606-w. Nat Commun. 2020. PMID: 32488078 Free PMC article.
-
Learning to Approximate Functions Using Nb-Doped SrTiO3 Memristors.Front Neurosci. 2021 Feb 19;14:627276. doi: 10.3389/fnins.2020.627276. eCollection 2020. Front Neurosci. 2021. PMID: 33679290 Free PMC article.
-
Effects of Charge Trapping on Memory Characteristics for HfO2-Based Ferroelectric Field Effect Transistors.Nanomaterials (Basel). 2023 Feb 6;13(4):638. doi: 10.3390/nano13040638. Nanomaterials (Basel). 2023. PMID: 36839006 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources