Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jan 28;25(4):418-432.
doi: 10.3748/wjg.v25.i4.418.

Differentiating Crohn's disease from intestinal tuberculosis

Affiliations
Review

Differentiating Crohn's disease from intestinal tuberculosis

Saurabh Kedia et al. World J Gastroenterol. .

Abstract

Differentiating Crohn's disease (CD) and intestinal tuberculosis (ITB) has remained a dilemma for most of the clinicians in the developing world, which are endemic for ITB, and where the disease burden of inflammatory bowel disease is on the rise. Although, there are certain clinical (diarrhea/hematochezia/perianal disease common in CD; fever/night sweats common in ITB), endoscopic (longitudinal/aphthous ulcers common in CD; transverse ulcers/patulous ileocaecal valve common in ITB), histologic (caseating/confluent/large granuloma common in ITB; microgranuloma common in CD), microbiologic (positive stain/culture for acid fast-bacillus in ITB), radiologic (long segment involvement/comb sign/skip lesions common in CD; necrotic lymph node/contiguous ileocaecal involvement common in ITB), and serologic differences between CD and ITB, the only exclusive features are caseation necrosis on biopsy, positive smear for acid-fast bacillus (AFB) and/or AFB culture, and necrotic lymph node on cross-sectional imaging in ITB. However, these exclusive features are limited by poor sensitivity, and this has led to the development of multiple multi-parametric predictive models. These models are also limited by complex formulae, small sample size and lack of validation across other populations. Several new parameters have come up including the latest Bayesian meta-analysis, enumeration of peripheral blood T-regulatory cells, and updated computed tomography based predictive score. However, therapeutic anti-tubercular therapy (ATT) trial, and subsequent clinical and endoscopic response to ATT is still required in a significant proportion of patients to establish the diagnosis. Therapeutic ATT trial is associated with a delay in the diagnosis of CD, and there is a need for better modalities for improved differentiation and reduction in the need for ATT trial.

Keywords: Computed tomographic enterography; Crohn's disease; Endoscopy; Granuloma; Intestinal tuberculosis.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Endoscopic images. A: Longitudinal ulcer in a patient with Crohn’s disease; B: Coblestoning in a patient with Crohn’s disease; C: Deep ileal ulcer in a patient with Crohn’s disease; D: Transverse ulcer with a stricture in a patient with intestinal tuberculosis; E: Ulcerated bulky ileocaecal valve in a patient with intestinal tuberculosis.
Figure 2
Figure 2
Colonic biopsy. A: Patchy distortion of crypt architecture (arrows) (× 40). B: Features of focal active cryptitis are noted (arrow) (× 200). C: Colonic biopsy in a case of Crohn’s disease shows pericrypt mucosal microgranuloma (arrow) (× 40). D: Ileal biopsy in a case of ileocaecal tuberculosis shows blunting of ileal villi with crypt branching (arrow) (× 100). E: Serosal confluent necrotizing epithelioid cell granulomas (arrows) were noted (× 40). F: Photomicrograph showing an epithelioid cell granuloma with central necrosis (arrow) and Langhan’s giant cells (× 200).
Figure 3
Figure 3
Coronal computed tomography images in patients with Crohn’s disease. A: Long segment ileal thickening; B: Mural stratification (arrow) and increased visceral fat (arrowhead); C: Comb sign; D: Axial computed tomography image in a patient with intestinal tuberculosis demonstrating short segment ileocaecal thickening (arrow) with necrotic lymph node (arrowhead); and E: Coronal magnetic resonance image in a patient with intestinal tuberculosis showing ileocaecal thickening (arrowhead) and necrotic lymph node (arrow).
Figure 4
Figure 4
Algorithm for following a patient on therapeutic anti-tubercular therapy trial. ATT: Anti-tubercular therapy; CD: Crohn’s disease; ITB: Intestinal tuberculosis.

References

    1. Omran A. The epidemiologic transition theory revisited thirty years later. World Health Stat Q. 1998;51:99–119.
    1. Kedia S, Ahuja V. Is the emergence of inflammatory bowel disease a prime example of "the third epidemiological transition?". Indian J Gastroenterol. 2018;37:183–185. - PubMed
    1. Pulimood AB, Amarapurkar DN, Ghoshal U, Phillip M, Pai CG, Reddy DN, Nagi B, Ramakrishna BS. Differentiation of Crohn's disease from intestinal tuberculosis in India in 2010. World J Gastroenterol. 2011;17:433–443. - PMC - PubMed
    1. Ahuja V, Tandon RK. Inflammatory bowel disease in the Asia-Pacific area: a comparison with developed countries and regional differences. J Dig Dis. 2010;11:134–147. - PubMed
    1. Singh P, Ananthakrishnan A, Ahuja V. Pivot to Asia: inflammatory bowel disease burden. Intest Res. 2017;15:138–141. - PMC - PubMed

MeSH terms

Substances