Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 25:8:19.
doi: 10.1186/s13756-019-0465-y. eCollection 2019.

Using local clinical and microbiological data to develop an institution specific carbapenem-sparing strategy in sepsis: a nested case-control study

Affiliations

Using local clinical and microbiological data to develop an institution specific carbapenem-sparing strategy in sepsis: a nested case-control study

Merel M C Lambregts et al. Antimicrob Resist Infect Control. .

Abstract

Background: From a stewardship perspective it is recommended that antibiotic guidelines are adjusted to the local setting, accounting for the local epidemiology of pathogens. In many settings the prevalence of Gram-negative pathogens with resistance to empiric sepsis therapy is increasing. How and when to escalate standard sepsis therapy to a reserve antimicrobial agent, is a recurrent dilemma. The study objective was to develop decision strategies for empiric sepsis therapy based on local microbiological and clinical data, and estimate the number needed to treat with a carbapenem to avoid mismatch of empiric therapy in one patient (NNTC).

Methods: We performed a nested case control study in patients (> 18 years) with Gram-negative bacteremia in 2013-2016. Cases were defined as patients with Gram-negative bacteremia with in vitro resistance to the combination 2nd generation cephalosporin AND aminoglycoside (C-2GC + AG). Control patients had Gram-negative bacteremia with in vitro susceptibility to cefuroxime AND/OR gentamicin, 1:2 ratio. Univariate and multivariable analysis was performed for demographic and clinical predictors of resistance. The adequacy rates of empiric therapy and the NNTC were estimated for different strategies.

Results: The cohort consisted of 486 episodes of Gram-negative bacteremia in 450 patients. Median age was 66 years (IQR 56-74). In vitro resistance to C-2GC + AG was present in 44 patients (8.8%). Independent predictors for resistance to empiric sepsis therapy were hematologic malignancy (adjusted OR 4.09, 95%CI 1.43-11.62, p < 0.01), previously cultured drug resistant pathogen (adjusted OR 3.72. 95%CI 1.72-8.03, p < 0.01) and antibiotic therapy during the preceding 2 months (adjusted OR 12.5 4.08-38.48, p < 0.01). With risk-based strategies, an adequacy rate of empiric therapy of 95.2-99.3% could be achieved. Compared to treating all patients with a carbapenem, the NNTC could be reduced by 82.8% (95%CI 78.5-87.5%) using the targeted approaches.

Conclusions: A risk-based approach in empiric sepsis therapy has the potential to better target the use of reserve antimicrobial agents aimed at multi-resistant Gram-negative pathogens. A structured evaluation of the expected antimicrobial consumption and antibiotic adequacy rates is essential to be able to weigh the costs and benefits of potential antibiotic strategies and select the most appropriate approach.

Keywords: Antibiotic stewardship; Antimicrobial resistance; Empiric therapy; Gram-negative bacteremia; Guideline-development; Sepsis.

PubMed Disclaimer

Conflict of interest statement

Because of the non-interventional, retrospective design of the study, the Dutch Medical Research Involving Human Subjects Act did not apply .Not applicable.All authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Odds ratio for resistance to empiric therapy related to time since the last drug resistant pathogen (DRP) was cultured. Legend. M = months. C-2GC + AG = Combination 2nd generation cephalosporin and aminoglycoside. Prior-DRP = drug resistant pathogen(s) isolated from any body site: Vancomycin resistant enterococci, multi resistant Staphylococcus aureus, Enterobacteriaceae with in vitro resistance to aminoglycosides, second and/or third generation cephalosporin’s (including ESBL positive Enterobacteriaceae) and/or quinolones, Pseudomonas aeruginosa with resistance to third generation cephalosporin’s, aminoglycosides or quinolones. Odds ratio for infection with cefuroxime and gentamicin resistant Gram-negative pathogen, for patients with prior-DRP isolated compared to patients without prior-DRP isolates, for different time intervals in months since the last DRP was cultured. Note that the y-axis is on a logarithmic scale
Fig. 2
Fig. 2
Estimation of the effect of the different empiric strategies on effective therapy rate and consumption of carbapenems, differentiated by a priori probability of bacteremia and compared to other strategies for selection of empiric therapy. Legend. NNTC = number of patients needed to treat with a carbapenem instead of cefuroxime/gentamicin to avoid mismatch of empiric therapy in one patient. C-2GC + AG = 2nd generation cephalosporin/aminoglycoside combination therapy. DRP = drug resistant pathogen(s) isolated from any body site: Vancomycin resistant enterococci, multi resistant Staphylococcus aureus, enterobacteriaceae with in vitro resistance to aminoglycosides, second and/or third generation cephalosporin’s (including ESBL positive Enterobacteriaceae) and/or quinolones, Pseudomonas aeruginosa with resistance to third generation cephalosporins, aminoglycosides or quinolones.. Current clinical practice: 2GC + AG as standard therapy, escalation to a carbapenem according to judgment of treating physician. The percentages (91.2–99.0%) indicate the proportion of patients with bacteremia that would receive adequate treatment if the strategy was implemented. For example: if all patients were to be treated with a carbapenem, the overall rate of adequate therapy in patients with bacteremia would be 99.0%. In case of an a priory risk of bacteremia of 10%, the corresponding NNTC is 128 patients

References

    1. The National Institute for Health and Care Excellence. Antimicrobial stewardship: systems and processes for effective antimicrobial medicine use (NICE guideline 15). 2015. Available at: https://www.nice.org.uk/guidance/ng15. - PubMed
    1. Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5(6):229–241. doi: 10.1177/2042098614554919. - DOI - PMC - PubMed
    1. Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ. 2010;340:c2096. doi: 10.1136/bmj.c2096. - DOI - PubMed
    1. Pitman EP. UK recommendations for combating antimicrobial resistance: a review of 'antimicrobial stewardship: systems and processes for effective antimicrobial medicine use' (NICE guideline NG15, 2015) and related guidance. Am J Health Syst Pharm. 2017. - PubMed
    1. Bair MJ. The global threat of antimicrobial resistance: science for intervention. Infect Control Hosp Epidemiol. 2015;6:22–29. - PMC - PubMed