Investigating Intervention Components and Exploring States of Receptivity for a Smartphone App to Promote Physical Activity: Protocol of a Microrandomized Trial
- PMID: 30702430
- PMCID: PMC6374735
- DOI: 10.2196/11540
Investigating Intervention Components and Exploring States of Receptivity for a Smartphone App to Promote Physical Activity: Protocol of a Microrandomized Trial
Abstract
Background: Smartphones enable the implementation of just-in-time adaptive interventions (JITAIs) that tailor the delivery of health interventions over time to user- and time-varying context characteristics. Ideally, JITAIs include effective intervention components, and delivery tailoring is based on effective moderators of intervention effects. Using machine learning techniques to infer each user's context from smartphone sensor data is a promising approach to further enhance tailoring.
Objective: The primary objective of this study is to quantify main effects, interactions, and moderators of 3 intervention components of a smartphone-based intervention for physical activity. The secondary objective is the exploration of participants' states of receptivity, that is, situations in which participants are more likely to react to intervention notifications through collection of smartphone sensor data.
Methods: In 2017, we developed the Assistant to Lift your Level of activitY (Ally), a chatbot-based mobile health intervention for increasing physical activity that utilizes incentives, planning, and self-monitoring prompts to help participants meet personalized step goals. We used a microrandomized trial design to meet the study objectives. Insurees of a large Swiss insurance company were invited to use the Ally app over a 12-day baseline and a 6-week intervention period. Upon enrollment, participants were randomly allocated to either a financial incentive, a charity incentive, or a no incentive condition. Over the course of the intervention period, participants were repeatedly randomized on a daily basis to either receive prompts that support self-monitoring or not and on a weekly basis to receive 1 of 2 planning interventions or no planning. Participants completed a Web-based questionnaire at baseline and postintervention follow-up.
Results: Data collection was completed in January 2018. In total, 274 insurees (mean age 41.73 years; 57.7% [158/274] female) enrolled in the study and installed the Ally app on their smartphones. Main reasons for declining participation were having an incompatible smartphone (37/191, 19.4%) and collection of sensor data (35/191, 18.3%). Step data are available for 227 (82.8%, 227/274) participants, and smartphone sensor data are available for 247 (90.1%, 247/274) participants.
Conclusions: This study describes the evidence-based development of a JITAI for increasing physical activity. If components prove to be efficacious, they will be included in a revised version of the app that offers scalable promotion of physical activity at low cost.
Trial registration: ClinicalTrials.gov NCT03384550; https://clinicaltrials.gov/ct2/show/NCT03384550 (Archived by WebCite at http://www.webcitation.org/74IgCiK3d).
International registered report identifier (irrid): DERR1-10.2196/11540.
Keywords: incentives; mHealth; physical activity; self-regulation; smartphone; walking.
©Jan-Niklas Kramer, Florian Künzler, Varun Mishra, Bastien Presset, David Kotz, Shawna Smith, Urte Scholz, Tobias Kowatsch. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 31.01.2019.
Conflict of interest statement
Conflicts of Interest: JNK, FK, and TK are affiliated with the Center for Digital Health Interventions, a joint initiative of the Department of Management, Technology, and Economics at ETH Zurich and the Institute of Technology Management at the University of St. Gallen, which is funded in part by the Swiss health insurer CSS. TK is also cofounder of Pathmate Technologies, a university spin-off company that creates and delivers digital clinical pathways and has used the open source MobileCoach platform for that purpose, too. However, Pathmate Technologies is not involved in the intervention described in this paper. No other conflicts of interests are declared.
Figures
References
-
- Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health. Sci Transl Med. 2015 Apr 15;7(283):283rv3. doi: 10.1126/scitranslmed.aaa3487. http://europepmc.org/abstract/MED/25877894 7/283/283rv3 - DOI - PMC - PubMed
-
- World Health Organization World health statistics 2017: monitoring health for the SDGs. 2017. [2018-11-30]. https://www.who.int/gho/publications/world_health_statistics/2017/en/
-
- Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, Murphy SA. Just-in-Time Adaptive Interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2018 May 18;52(6):446–62. doi: 10.1007/s12160-016-9830-8.10.1007/s12160-016-9830-8 - DOI - PMC - PubMed
-
- Murray E, Hekler EB, Andersson G, Collins LM, Doherty A, Hollis C, Rivera DE, West R, Wyatt JC. Evaluating digital health interventions: key questions and approaches. Am J Prev Med. 2016 Dec;51(5):843–51. doi: 10.1016/j.amepre.2016.06.008. http://europepmc.org/abstract/MED/27745684 S0749-3797(16)30229-X - DOI - PMC - PubMed
-
- Klasnja P, Hekler EB, Shiffman S, Boruvka A, Almirall D, Tewari A, Murphy SA. Microrandomized trials: an experimental design for developing just-in-time adaptive interventions. Health Psychol. 2015 Dec;34S:1220–8. doi: 10.1037/hea0000305. http://europepmc.org/abstract/MED/26651463 2015-56045-003 - DOI - PMC - PubMed
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
