Recommendations for Methodology of Virtual Reality Clinical Trials in Health Care by an International Working Group: Iterative Study
- PMID: 30702436
- PMCID: PMC6374734
- DOI: 10.2196/11973
Recommendations for Methodology of Virtual Reality Clinical Trials in Health Care by an International Working Group: Iterative Study
Abstract
Background: Therapeutic virtual reality (VR) has emerged as an efficacious treatment modality for a wide range of health conditions. However, despite encouraging outcomes from early stage research, a consensus for the best way to develop and evaluate VR treatments within a scientific framework is needed.
Objective: We aimed to develop a methodological framework with input from an international working group in order to guide the design, implementation, analysis, interpretation, and communication of trials that develop and test VR treatments.
Methods: A group of 21 international experts was recruited based on their contributions to the VR literature. The resulting Virtual Reality Clinical Outcomes Research Experts held iterative meetings to seek consensus on best practices for the development and testing of VR treatments.
Results: The interactions were transcribed, and key themes were identified to develop a scientific framework in order to support best practices in methodology of clinical VR trials. Using the Food and Drug Administration Phase I-III pharmacotherapy model as guidance, a framework emerged to support three phases of VR clinical study designs-VR1, VR2, and VR3. VR1 studies focus on content development by working with patients and providers through the principles of human-centered design. VR2 trials conduct early testing with a focus on feasibility, acceptability, tolerability, and initial clinical efficacy. VR3 trials are randomized, controlled studies that evaluate efficacy against a control condition. Best practice recommendations for each trial were provided.
Conclusions: Patients, providers, payers, and regulators should consider this best practice framework when assessing the validity of VR treatments.
Keywords: clinical trials; consensus; virtual reality.
©Brandon Birckhead, Carine Khalil, Xiaoyu Liu, Samuel Conovitz, Albert Rizzo, Itai Danovitch, Kim Bullock, Brennan Spiegel. Originally published in JMIR Mental Health (http://mental.jmir.org), 31.01.2019.
Conflict of interest statement
Conflicts of Interest: BS was the Principal Investigator of a 2016 Virtual Reality (VR) research grant (#CSR211835), administered by his academic institution, from AppliedVR (Los Angeles, California). He is currently the Principal Investigator of a VR research grant (#CSR212943), administered by his academic institution, from Traveler’s Insurance (New York City, NY) and Samsung Electronics (Suwon, South Korea). AR’s research relating to this paper has been funded by the National Institutes of Health (NIH), National Science Foundation, US Army Research Office, Telemedicine and Advanced Technology Research Center, US Army Medical Research Acquisition Activity, Department of Veterans Affairs, and Kesseler Foundation. All other authors (BB, CK, XL, SC, ID, and KB) have no conflicts of interest. Regarding the other Virtual Reality Clinical Outcomes Research Experts members, Dr Rothbaum owns equity in Virtual Better, Inc, which is developing products related to virtual reality research related to this paper. The terms of this arrangement have been approved by Emory University in accordance with its conflict of interest policies. Dr Johnson receives funding through the NIH to study virtual environments. Some of Dr van Rooijen’s VR research has been funded by Phillips, Inc (Amsterdam, Netherlands). All other members of the committee (Tom Caruso, Ali Fardinpour, Diane Gromala, Rafael Grossmann, Kate Hardy, Ted Jones, Kate Laver, Sheila Parinas, Les Posen, David Thomas, Herve Rosay, Earl Scott, and Andrea Stevenson Won) have no conflicts of interest.
Figures
References
-
- Dascal J, Reid M, IsHak WW, Spiegel B, Recacho J, Rosen B, Danovitch I. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials. Innov Clin Neurosci. 2017;14(1-2):14–21. http://europepmc.org/abstract/MED/28386517 - PMC - PubMed
-
- Mahrer NE, Gold JI. The use of virtual reality for pain control: a review. Curr Pain Headache Rep. 2009 Apr;13(2):100–9. - PubMed
-
- Lohse KR, Hilderman CGE, Cheung KL, Tatla S, Van der Loos HFM. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3):e93318. doi: 10.1371/journal.pone.0093318. http://dx.plos.org/10.1371/journal.pone.0093318 PONE-D-14-02313 - DOI - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Medical