Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 1:302:53-60.
doi: 10.1016/j.cbi.2019.01.029. Epub 2019 Jan 28.

Dimethylfumarate ameliorates hepatic injury and fibrosis induced by carbon tetrachloride

Affiliations

Dimethylfumarate ameliorates hepatic injury and fibrosis induced by carbon tetrachloride

Mohamed E Mostafa et al. Chem Biol Interact. .

Abstract

The current study was designed to assess the antifibrotic effect of dimethylfumarate (DMF) on CCl4-induced hepatic injury in rats. Hepatic injury was induced by intraperitoneal twice weekly injection of CCl4 for 2 and 3 months. DMF was administered orally during the last 4 weeks in each model. Liver injury was estimated using biochemical parameters such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), total serum bilirubin (TSB), total protein, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Additionally, oxidative stress parameters such as superoxide dismutase (SOD), reduced glutathione (GSH), nitric oxide (NOx), and malondialdehyde (MDA) were studied. Collagen IV (Col IV), alpha-smooth muscle actin (α-SMA), transforming growth factor beta1 (TGF-β1) and nuclear factor kappa B (NF-κB) were also assessed as markers of fibrosis and inflammation. Histopathological examination of liver tissues was performed and compared with control. The obtained results showed that DMF ameliorated the elevated markers of liver injury and oxidative stress in addition to hepatic necroinflammation scoring induced by CCl4. Furthermore, DMF ameliorated CCl4-induced fibrosis as evidenced by histopathological scoring and collagen IV content. Besides, we investigated the possible underlying mechanisms for these effects which include: (1) attenuating oxidative stress as designated by decreased MDA and NOx as well as increased GSH and SOD levels; (2) anti-inflammatory effect as evidenced by inhibitory effect on NF-κB; (3) preventing hepatic stellate cells (HSCs) activation as indicated by blunting the expression of α-SMA; and (4) downregulating the fibrogenesis response of HSCs as denoted by inhibiting TGF-β1 secretion and Col IV deposition. In conclusion, this study clarified the antifibrotic effect of DMF that might serve as a new candidate for management of liver fibrosis.

Keywords: Carbon tetrachloride; Dimethylfumarate; Hepatic fibrosis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources