Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 1:128:509-520.
doi: 10.1016/j.ijbiomac.2019.01.151. Epub 2019 Jan 29.

Molecular and structural insights into skin collagen reveals several factors that influence its architecture

Affiliations

Molecular and structural insights into skin collagen reveals several factors that influence its architecture

Rafea Naffa et al. Int J Biol Macromol. .

Abstract

Although the biomechanical properties of skin and its molecular components have been extensively studied, little research has been devoted to understanding the links between them. Here, a comprehensive analysis of the molecular components of deer and cow skins was undertaken in order to understand the basis of their physical properties. These skins were chosen because they are known to be strong yet supple, exhibiting properties that have been exploited by man for centuries. Firstly, the tensile strength, tear strength and denaturation temperature of deer and cow skins were measured. Secondly, the organisation of the collagen fibrils and presence of glycosaminoglycans in each skin was investigated using polarising microscopy (PM), laser scanning confocal microscopy (LSCM), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS). Finally, amino acid, crosslink and glycosaminoglycan analyses were carried out on both skins in the study. The results of the study showed that individual physical properties such as tensile strength of the skin are derived from different combinations of biomolecular components which are reflected in collagen architecture. The "wavy" organisation of collagen fibres in deer skin was associated with a small fibril diameter, uniform glycosaminoglycan distribution and higher proportion of trivalent crosslinks. In contrast, the collagen fibrils in cow skin were large, contained a diverse glycosaminoglycan distribution and a higher proportion of tetravalent crosslinks, resulting in straight fibres. This study showed for the first time that the relationship between the structure of collagen in skin and its biomechanical functions is complex, arising from different architectural and molecular features including organisation of collagen fibres, diameters of collagen fibrils, distribution and amount of glycosaminoglycans and types and concentrations of crosslinks.

Keywords: Collagen structure; Glycosaminoglycans; Natural crosslinks; Skin; Small angle X-ray scattering; Transmission electron microscope.

PubMed Disclaimer

LinkOut - more resources