Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 1;84(5):2415-2424.
doi: 10.1021/acs.joc.8b02613. Epub 2019 Feb 15.

Substrate-Controlled Direct α-Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C6F5)3 as Catalyst

Affiliations

Substrate-Controlled Direct α-Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C6F5)3 as Catalyst

Abhijit Sau et al. J Org Chem. .

Abstract

B(C6F5)3 enables the metal-free unprecedented substrate-controlled direct α-stereoselective synthesis of deoxyglycosides from glycals. 2,3-Unsaturated α- O-glycoside products are obtained with deactivated glycals at 75 °C in the presence of the catalyst, while 2-deoxyglycosides are formed using activated glycals that bear no leaving group at C-3 at lower temperatures. The reaction proceeds in good to excellent yields via concomitant borane activation of glycal donor and nucleophile acceptor. The method is exemplified with the synthesis of a series of rare and biologically relevant glycoside analogues.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. BCF-Catalysed Synthesis of 2,3-Unsaturated Glycosides from “Disarmed” Glycals (Pathway A) and 2-α-Deoxyglycosides from “armed” Glycals (Pathway B)
Scheme 2
Scheme 2. Reaction of Glycals 1a1e, with Glycosyide Acceptors 2e
Scheme 3
Scheme 3. Synthesis of Rare Glycosides 6–8
Scheme 4
Scheme 4. Model Glycosylations of 2a or 17 with Glycal Donors 15, 1a, or 9a
Scheme 5
Scheme 5. Proposed Mechanism

Similar articles

Cited by

References

    1. He X. M.; Liu H. W. Mechanisms of enzymatic C-O bond cleavages in deoxyhexose biosynthesis. Curr. Opin. Chem. Biol. 2002, 6, 590–597. 10.1016/S1367-5931(02)00367-8. - DOI - PubMed
    2. Lindhorst T. K.Glycoscience: Chemistry and Chemical Biology;Springer: Berlin, 2001; pp 2393–2439.
    1. Marzabadi C. H.; Franck R. W. The synthesis of 2-deoxyglycosides: 1988–1999. Tetrahedron 2000, 56, 8385–8417. 10.1016/S0040-4020(00)00691-8. - DOI
    2. Williams R.; Galan M. C. Recent Advances in Organocatalytic Glycosylations. Eur. J. Org. Chem. 2017, 2017, 6247–6264. 10.1002/ejoc.201700785. - DOI
    3. Medina S.; Galan M. C. Recent developments in the stereoselective synthesis of deoxy glycosides. Carbohydr. Chem. 2015, 41, 59–89. 10.1039/9781782620600-00059. - DOI
    1. Benito-Alifonso D.; Galan M. C.. Bronsted and Lewis Acid Catalyzed Glycosylation. In Selective Glycosylations: Synthetic Methods and Catalysis; Bennett C. E., Ed.; 2017; pp 155–171.
    2. McKay M. J.; Nguyen H. M. Recent Advances in Transition Metal-Catalyzed Glycosylation. ACS Catal. 2012, 2, 1563–1595. 10.1021/cs3002513. - DOI - PMC - PubMed
    3. Balmond E. I.; Galan M. C.; McGarrigle E. M. Recent Developments in the Application of Organocatalysis to Glycosylations. Synlett 2013, 24, 2335–2339. 10.1055/s-0033-1338970. - DOI
    4. Li X. H.; Zhu J. L. Glycosylation via Transition-Metal Catalysis: Challenges and Opportunities. Eur. J. Org. Chem. 2016, 2016, 4724–4767. and references therein10.1002/ejoc.201600484. - DOI
    5. Pradhan T. K.; Lin C. C.; Mong K. K. T. Preparation of a Protected 3-Deoxy-D-manno-oct-2-ulosonate Glycal Donor for the Synthesis of beta-KDO-Containing Oligosaccharides. Org. Lett. 2014, 16, 1474–1477. 10.1021/ol500275j. - DOI - PubMed
    6. Wang H.; Tao J. Y.; Cai X. P.; Chen W.; Zhao Y. Q.; Xu Y.; Yao W.; Zeng J.; Wan Q. Stereoselective Synthesis of alpha-Linked 2-Deoxy Glycosides Enabled by Visible-Light-Mediated Reductive Deiodination. Chem. - Eur. J. 2014, 20, 17319–17323. 10.1002/chem.201405516. - DOI - PubMed
    7. Song W. Z.; Zhao Y.; Lynch J. C.; Kim H.; Tang W. P. Divergent de novo synthesis of all eight stereoisomers of 2,3,6-trideoxyhexopyranosides and their oligomers. Chem. Commun. 2015, 51, 17475–17478. 10.1039/C5CC07787G. - DOI - PubMed
    8. Thombal R. S.; Jadhav V. H. Facile O-glycosylation of glycals using Glu-Fe3O4-SO3H, a magnetic solid acid catalyst. RSC Adv. 2016, 6, 30846–30851. 10.1039/C6RA03305A. - DOI
    9. Tanaka H.; Yoshizawa A.; Takahashi T. Direct and stereoselective synthesis of beta-linked 2,6-deoxyoligosaccharides. Angew. Chem., Int. Ed. 2007, 46, 2505–2507. 10.1002/anie.200604031. - DOI - PubMed
    10. Verma V. P.; Wang C. C. Highly Stereoselective Glycosyl-Chloride-Mediated Synthesis of 2-Deoxyglucosides. Chem. - Eur. J. 2013, 19, 846–851. 10.1002/chem.201203418. - DOI - PubMed
    11. Zhu D. Y.; Baryal K. N.; Adhikari S.; Zhu J. L. Direct Synthesis of 2-Deoxy-beta-Glycosides via Anomeric O-Alkylation with Secondary Electrophiles. J. Am. Chem. Soc. 2014, 136, 3172–3175. 10.1021/ja4116956. - DOI - PubMed
    12. Beale T. M.; Moon P. J.; Taylor M. S. Organoboron-Catalyzed Regio- and Stereoselective Formation of beta-2-Deoxyglycosidic Linkages. Org. Lett. 2014, 16, 3604–3607. 10.1021/ol501711v. - DOI - PubMed
    13. Soliman S. E.; Bennett C. S. Reagent-Controlled Synthesis of the Branched Trisaccharide Fragment of the Antibiotic Saccharomicin B. Org. Lett. 2018, 20, 3413–3416. 10.1021/acs.orglett.8b01355. - DOI - PMC - PubMed
    14. Lloyd D.; Bennett C. S. An Improved Approach to the Direct Construction of 2-Deoxy-beta-Linked Sugars: Applications to Oligosaccharide Synthesis. Chem. - Eur. J. 2018, 24, 7610–7614. 10.1002/chem.201800736. - DOI - PMC - PubMed
    15. Bennett C. S.; Galan M. C. Methods for 2-Deoxyglycoside Synthesis. Chem. Rev. 2018, 118, 7931–7985 . and references therein10.1021/acs.chemrev.7b00731. - DOI - PMC - PubMed
    16. Bradshaw G. A.; Colgan A. C.; Allen N. P.; Pongener I.; Boland M. B.; Ortin Y.; McGarrigle E. M. Stereoselective organocatalyzed glycosylations - thiouracil, thioureas and monothiophthalimide act as Bronsted acid catalysts at low loadings. Chem. Sci. 2019, 10, 508–514. 10.1039/C8SC02788A. - DOI - PMC - PubMed
    1. Zhao G. Y.; Wang T. Stereoselective Synthesis of 2-Deoxyglycosides from Glycals by Visible-Light-Induced Photoacid Catalysis. Angew. Chem., Int. Ed. 2018, 57, 6120–6124. 10.1002/anie.201800909. - DOI - PubMed
    2. Medina S.; Harper M. J.; Balmond E. I.; Miranda S.; Crisenza G. E. M.; Coe D. M.; McGarrigle E. M.; Galan M. C. Stereoselective Glycosylation of 2-Nitrogalactals Catalyzed by a Bifunctional Organocatalyst. Org. Lett. 2016, 18, 4222–4225. 10.1021/acs.orglett.6b01962. - DOI - PMC - PubMed
    3. Balmond E. I.; Benito-Alifonso D.; Coe D. M.; Alder R. W.; McGarrigle E. M.; Galan M. C. A 3,4-trans-Fused Cyclic Protecting Group Facilitates alpha-Selective Catalytic Synthesis of 2-Deoxyglycosides. Angew. Chem., Int. Ed. 2014, 53, 8190–8194. 10.1002/anie.201403543. - DOI - PMC - PubMed
    4. Balmond E. I.; Coe D. M.; Galan M. C.; McGarrigle E. M. Alpha-Selective Organocatalytic Synthesis of 2-Deoxygalactosides. Angew. Chem., Int. Ed. 2012, 51, 9152–9155. 10.1002/anie.201204505. - DOI - PubMed
    5. Sherry B. D.; Loy R. N.; Toste F. D. Rhenium(V)-catalyzed synthesis of 2-deoxy-alpha-glycosides. J. Am. Chem. Soc. 2004, 126, 4510–4511. 10.1021/ja031895t. - DOI - PubMed
    6. Das S.; Pekel D.; Neudorfl J. M.; Berkessel A. Organocatalytic Glycosylation by Using Electron- Deficient Pyridinium Salts. Angew. Chem., Int. Ed. 2015, 54, 12479–12483. 10.1002/anie.201503156. - DOI - PubMed
    7. Liu J. L.; Zhang Y. T.; Liu H. F.; Zhou L.; Chen J. N-Heterocyclic Carbene Catalyzed Stereoselective Glycosylation of 2-Nitrogalactals. Org. Lett. 2017, 19, 5272–5275. 10.1021/acs.orglett.7b02543. - DOI - PubMed
    1. Schmidt R. R.; Angerbauer R. Convenient Preparation of 2,3-Unsaturated N-Galactosyl Derivatives. Carbohydr. Res. 1979, 72, 272–275. 10.1016/S0008-6215(00)83948-8. - DOI
    2. Fraser-Reid B. Some progeny of 2,3-unsaturated sugars - They little resemble grandfather glucose: Twenty years later. Acc. Chem. Res. 1996, 29, 57–66. 10.1021/ar950104s. - DOI
    3. Csuk R.; Schaade M.; Krieger C. Synthesis of C-glycosides from glycals or vinylogous lactones and trimethylsilyl ketene acetals. Tetrahedron 1996, 52, 6397–6408. 10.1016/0040-4020(96)00275-X. - DOI
    4. Borrachero-Moya P.; Cabrera-Escribano F.; Gomez-Guillen M.; Paredes-Leon M. d. R. Synthesis of 4-(4,6-di-0-benzyl-2,3-dideoxy-beta-D-erythro-hex-2-enopyranosyl)pyrazoles from 3,4,6-tri-O-acetyl-D-glucal. Carbohydr. Res. 1998, 308, 181–190. 10.1016/S0008-6215(98)00059-7. - DOI
    5. Gomez A. M.; Lobo F.; Uriel C.; Lopez J. C. Recent Developments in the Ferrier Rearrangement. Eur. J. Org. Chem. 2013, 2013, 7221–7262. 10.1002/ejoc.201300798. - DOI
    6. Ferrier R. J. Unsaturated Carbohydrates. Part II. Three Reactions Leading to Unsaturated Glycopyranosides. J. Chem. Soc. 1964, 5443–5449. 10.1039/jr9640005443. - DOI
    7. Ferrier R. J.; Hoberg J. O. Synthesis and reactions of unsaturated sugars. Adv. Carbohydr. Chem. Biochem. 2003, 58, 55–119. 10.1016/S0065-2318(03)58003-9. - DOI - PubMed

Publication types