Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 23;10(2):535-541.
doi: 10.1039/c8sc03748e. eCollection 2019 Jan 14.

Asymmetric synthesis of (-)-naltrexone

Affiliations

Asymmetric synthesis of (-)-naltrexone

Sun Dongbang et al. Chem Sci. .

Abstract

(-)-Naltrexone, an opioid antagonist used extensively for the management of drug abuse, is derived from naturally occurring opioids. Herein, we report the first asymmetric synthesis of (-)-naltrexone that does not proceed through thebaine. The synthesis starts with simple, achiral precursors with catalytic enantioselective Sharpless dihydroxylation employed to introduce the stereogenic centers. A Rh(i)-catalyzed C-H alkenylation and torquoselective electrocyclization cascade provides the hexahydro isoquinoline bicyclic framework that serves as the precursor to the morphinan core. The acidic conditions used for Grewe cyclization not only provide the morphinan framework, but also cause a hydride shift resulting in the introduction of the C-6 oxo functionality present in (-)-naltrexone. The C-14 hydroxyl group is installed by an efficient two-step sequence of Pd-mediated ketone to enone dehydrogenation followed by C-H allylic oxidation using Cu(ii) and O2, a method that has not previously been reported either for the synthesis or semi-synthesis of opioids. The longest linear sequence is 17 steps, and because the stereogenic centers in the product rely on Sharpless asymmetric dihydroxylation, the route could be used to access either enantiomer of the natural product, which have disparate biological activities. The route also may be applicable to the preparation of opioid derivatives that could not be easily prepared from the more fully elaborated and densely functionalized opioid natural products that have traditionally served as the starting inputs.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Representative naturally occurring opioids (1–3) and semisynthetic opioid agonists (4–5) and an antagonist (6).
Fig. 2
Fig. 2. Hudlicky's semi-synthesis of (–)-naltrexone.
Scheme 1
Scheme 1. Approach to (–)-naltrexone from simple, achiral precursors.
Scheme 2
Scheme 2. Reactions and conditions: (a) (COCl)2 (1.16 equiv.), DMSO (2.2 equiv.), Et3N (5.0 equiv.), CH2Cl2, –78 → 23 °C; (b) P(OEt)3, neat, 120 °C; (c) LiOH·H2O (1.1 equiv.), MS 4 Å, THF, reflux; (d) K2OsO4·2H2O (1 mol%), (DHQD)2PHAL (5 mol%), K3Fe(CN)6 (3.00 equiv.), K2CO3 (3.00 equiv.), MeSO2NH2 (1.00 equiv.), tBuOH/H2O, 0 °C; (e) 2,2-dimethoxypropane (10 equiv.), TsOH·H2O (10 mol%), CH2Cl2, 0 °C; (f) Pd(OAc)2 (5 mol%), XPhos (15 mol%), Cs2CO3 (1.5 equiv.), dioxane, 65 °C; (g) DIBAL (4.0 equiv.), THF, –78 °C; (h) DMP (1.75 equiv.), pyridine (6.0 equiv.), CH2Cl2, 0 °C; (i) cyclopropylmethylamine (1.2 equiv.), MS 3 Å, PhMe, 23 °C.
Scheme 3
Scheme 3. Rh(i) C–H functionalization cascade. Condition and reagents: (a) [RhCl(coe)2]2 (5 mol%), (pNMe2)PhPEt2 (10 mol%), PhMe, 85 °C; (b) NaBH(OAc)3 (5.0 equiv.), AcOH, EtOH, 0 °C.
Scheme 4
Scheme 4. Synthesis of dehydrogenated enone 31 as the precursor to Installation of C-14. Conditions and reagents: (a) 55% H3PO4, 125 °C; (b) Br2 (2.0 equiv.), AcOH, 23 °C; NaOH(aq), 23 °C; (c) Tf2O (3.3 equiv.), pyridine, 0 °C; (d) Pd(TFA)2 (1.4 equiv.), TFA, DMSO, 80 °C.
Scheme 5
Scheme 5. Installation of C-14 hydroxylation and endgame synthesis to (–)-naltrexone (6). Conditions and reagents: (a) CuSO4 (2 mol%), ketoglutarate (4.5 equiv.), pyridine, 23 °C, O2; (b) Et3N (10 equiv.), Pd(OH)2 (20 wt%), EtOAc : MeOH = 1 : 3, H2, 23 °C; (c) BBr3 (5 equiv.), CH2Cl2, –40 → 0 °C.

References

    1. For selected reviews and publications on total synthesis of opioids:

    2. Rinner U., Hudlicky T. Top. Curr. Chem. 2012;309:33. - PubMed
    3. Zezula J., Hudlicky T. Synlett. 2005:388.
    4. Gates M., Tschudi G. J. Am. Chem. Soc. 1952;74:1109.
    5. Elad D., Ginsburg D. J. Am. Chem. Soc. 1954;76:312.
    6. Grewe R., Friedrichsen W. Chem. Ber. 1967;100:1550. - PubMed
    7. Beyerman H. C., van Berkel J., Lie T. S., Maat L., Wessels J. C. M., Bosman H. H., Buurman E., Bijsterveld E. J. M., Sinnige H. J. M. Recl. Trav. Chim. Pays-Bas. 1978;97:127.
    8. Rice K. C. J. Org. Chem. 1980;45:3135.
    9. Moos W. H., Gless R. D., Rapoport H. J. Org. Chem. 1983;48:227.
    10. White J. D., Caravatti G., Kline T. B., Edstrom E., Rice K. C., Brossi A. Tetrahedron. 1983;39:2393.
    11. Toth J. E., Hamann P. R., Fuchs P. L. J. Org. Chem. 1988;53:4694.
    12. Parker K. A., Fokas D. J. Am. Chem. Soc. 1992;114:9688.
    13. Tius M. A., Kerr M. A. J. Am. Chem. Soc. 1992;114:5959.
    14. Hong C. Y., Kado N., Overman L. E. J. Am. Chem. Soc. 1993;115:11028.
    15. Mulzer J., Dürner G., Trauner D. Angew. Chem., Int. Ed. 1996;35:2830.
    16. White J. D., Hrnciar P., Stappenbeck F. J. Org. Chem. 1997;62:5250.
    17. Butora G., Hudlicky T., Fearnley S., Stabile M., Gum A., Gonzales D. Synthesis. 1998:665.
    18. Taber D. F., Neubert T. D., Rheingold A. L. J. Am. Chem. Soc. 2002;124:12416. - PubMed
    19. Trost B. M., Tang W. J. Am. Chem. Soc. 2002;124:14542. - PubMed
    20. Trost B. M., Tang W., Toste F. D. J. Am. Chem. Soc. 2005;127:14785. - PubMed
    21. Parker K. A., Fokas D. J. Org. Chem. 2006;71:449. - PubMed
    22. Uchida K., Yokoshima S., Kan T., Fukuyama T. Org. Lett. 2006;8:5311. - PubMed
    23. Omori A. T., Finn K. J., Leisch H., Carroll R. J., Hudlicky T. Synlett. 2007:2859.
    24. Tanimoto H., Saito R., Chida N. Tetrahedron Lett. 2008;49:358.
    25. Varin M., Barré E., Iorga B., Guillou C. Chem.–Eur. J. 2008;14:6606. - PubMed
    26. Leisch H., Omori A. T., Finn K. J., Gilmet J., Bissett T., Ilceski D., Hudlicky T. Tetrahedron. 2009;65:9862.
    27. Magnus P., Sane N., Fauber B. P., Lynch V. J. Am. Chem. Soc. 2009;131:16045. - PubMed
    28. Stork G., Yamashita A., Adams J., Schulte G. R., Chesworth R., Miyazaki Y., Farmer J. J. J. Am. Chem. Soc. 2009;131:11402. - PubMed
    29. Koizumi H., Yokoshima S., Fukuyama T. Chem.–Asian J. 2010;5:2192. - PubMed
    30. Erhard T., Ehrlich G., Metz P. Angew. Chem., Int. Ed. 2011;50:3892. - PubMed
    31. Varghese V., Hudlicky T. Synlett. 2013:369.
    32. Li J., Liu G.-L., Zhao X.-H., Du J.-Y., Qu H., Chu W.-D., Ding M., Jin C.-Y., Wei M.-X., Fan C.-A. Chem.–Asian J. 2013;8:1105. - PubMed
    33. Geffe M., Opatz T. Org. Lett. 2014;16:5282. - PubMed
    34. Tissot M., Phipps R. J., Lucas C., Leon R. M., Pace R. D. M., Ngouansavanh T., Gaunt M. J. Angew. Chem., Int. Ed. 2014;53:13498. - PubMed
    35. Rycek L., Hayward J. J., Latif M. A., Tanko J., Simionescu R., Hudlicky T. J. Org. Chem. 2016;81:10930. - PubMed
    36. Park K. H., Chen R., Chen D. Y.-K. Chem. Sci. 2017;8:7031. - PMC - PubMed
    1. Manmade A., Dalzell H. C., Howes J. F., Razdan R. K. J. Med. Chem. 1981;24:1437. - PubMed
    1. Falk E. Muench. Med. Wochenschr. 1917;20:381.
    2. Kalso E. J. Pain Symptom Manage. 2005;29:47. - PubMed
    1. Varghese V. and Hudlicky T., A Short History of the Discovery and Development of Naltrexone and Other Derivatives, in Natural Products in Medicinal Chemistry, ed. S. Hanessian, Wiley-VCH, Weinheim, 2014, ch. 6, pp. 225–250.
    1. Blumberg H., Pachter I. J. and Matossian Z., US Pat., 1967, vol. 3, pp. 332–950.