Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;38(7):1750-1762.
doi: 10.1109/TMI.2019.2895894. Epub 2019 Jan 29.

Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis

Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis

Biting Yu et al. IEEE Trans Med Imaging. 2019 Jul.

Abstract

Magnetic resonance (MR) imaging is a widely used medical imaging protocol that can be configured to provide different contrasts between the tissues in human body. By setting different scanning parameters, each MR imaging modality reflects the unique visual characteristic of scanned body part, benefiting the subsequent analysis from multiple perspectives. To utilize the complementary information from multiple imaging modalities, cross-modality MR image synthesis has aroused increasing research interest recently. However, most existing methods only focus on minimizing pixel/voxel-wise intensity difference but ignore the textural details of image content structure, which affects the quality of synthesized images. In this paper, we propose edge-aware generative adversarial networks (Ea-GANs) for cross-modality MR image synthesis. Specifically, we integrate edge information, which reflects the textural structure of image content and depicts the boundaries of different objects in images, to reduce this gap. Corresponding to different learning strategies, two frameworks are proposed, i.e., a generator-induced Ea-GAN (gEa-GAN) and a discriminator-induced Ea-GAN (dEa-GAN). The gEa-GAN incorporates the edge information via its generator, while the dEa-GAN further does this from both the generator and the discriminator so that the edge similarity is also adversarially learned. In addition, the proposed Ea-GANs are 3D-based and utilize hierarchical features to capture contextual information. The experimental results demonstrate that the proposed Ea-GANs, especially the dEa-GAN, outperform multiple state-of-the-art methods for cross-modality MR image synthesis in both qualitative and quantitative measures. Moreover, the dEa-GAN also shows excellent generality to generic image synthesis tasks on benchmark datasets about facades, maps, and cityscapes.

PubMed Disclaimer

Publication types

MeSH terms